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Breakup of electrified jets is important in applications as diverse as electrospraying,
electroseparations and electrospray mass spectrometry. Breakup of a perfectly
conducting, incompressible Newtonian liquid jet surrounded by a passive insulating
gas that is stressed by a radial electric field is studied by a temporal analysis.
An initially quiescent jet is subjected to axially periodic shape perturbations and
the ensuing dynamics are followed numerically until pinch-off by both a three-
dimensional but axisymmetric (two-dimensional) and a one-dimensional slender-jet
algorithm. Results computed with these algorithms are verified against predictions
from linear theory for short times. Breakup times, ratios of the sizes of the primary
to satellite drops formed at pinch-off, and the Coulombic stability of these drops are
reported over a wide range of electrical Bond numbers, NE (ratio of electric to surface
tension force), Ohnesorge numbers, NOh (ratio of viscous to surface tension force),
and disturbance wavenumbers, k. Effect of surface charge on interface overturning is
investigated. Furthermore, the influence of electrostatic stresses on the dynamics of
pinch-off and the mechanisms of satellite drop formation is also addressed.

1. Introduction
The formation of drops of a liquid that is flowing out of a nozzle by dripping

or jetting in the absence or presence of electric fields is of immense scientific and
technological importance (Eggers 1997; Basaran 2002). A number of fascinating
electrohydrodynamic (EHD) flow transitions are known to occur as the flow rate of
the liquid in the nozzle and/or the strength of the electric field that the drop is being
subjected to are varied, as shown schematically in figure 1 (Cloupeau & Prunet-Foch
1989, 1990; Zhang & Basaran 1996). Over certain regions of the parameter space
governing the problem, the interface separating the drop from the ambient fluid is
nearly conical in shape and a fine jet issues from the tip of the drop (Zeleny 1917;
Taylor 1964, 1969; Hayati, Bailey & Tadros 1987a, b). The latter mode of EHD
jetting is now called the cone-jet mode of atomization (Cloupeau & Prunet-Foch
1989). Cone-jetting and some of the other phenomena depicted in figure 1 whereby
fine electrified jets form and sometimes subsequently break into drops are widely
used in applications as diverse as spraying (Vonnegut & Neubauer 1952; Jones &
Thong 1971), fibre spinning (Doshi & Reneker 1995; Reneker et al. 2000; Yarin,
Koobhongse & Reneker 2001; Hohman et al. 2001a, b), synthesis of ceramic particles
(Harris, Scott & Byers 1993), mass spectrometry (Cook 1986; Fenn et al. 1990), and
ink-jet printing (Sweet 1965). Although complete theoretical understanding of drop
and jet breakup in the presence of electric fields is challenging and requires a number
of different approaches that depend on the specific situation under consideration
(Gañan-Cálvo 1997; Cherney 1999; Higuera 2004; Notz & Basaran 1999; Reznik
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Figure 1. Phase diagram depicting flow transitions that occur as flow rate and/or electric
field strength are varied.

et al. 2004), a problem that is of central importance in the field is the capillary
pinching of filaments that are subjected to an electric field. The major goal of this
paper is to advance the state of understanding of capillary pinching and breakup of
such filaments through the use of high-accuracy computation.

The stability and breakup of uncharged liquid jets have been studied extensively,
beginning with the pioneering works of Plateau (1863) and Rayleigh (1879), who
demonstrated that a liquid filament is unstable to axisymmetric disturbances for which
the wavelength of the disturbance exceeds the circumference of the filament. Lord
Rayleigh’s linear analysis showed that, when the fluid viscosity is negligible, the fastest
growing axisymmetric disturbances correspond to an axial wavenumber k̃max ≈ 0.7/R̃,
where R̃ is the radius of the unperturbed filament, and that non-axisymmetric
disturbances are stable. Rayleigh (1892) later examined the linear stability of highly
viscous or Stokes jets, showing that the fastest growing disturbances correspond
to the long-wave limit. Basset (1894), Chandrasekhar (1961) and others extended
Rayleigh’s analysis, providing temporal analyses of the linear stability of Newtonian
liquid jets of arbitrary viscosity to infinitesimal-amplitude axisymmetric disturbances.
Goedde & Yuen (1970) carried out a series of experiments with harmonically forced
jets and showed that observed growth rates compare favourably with linear theory.
While linear stability analyses such as these provide useful estimates of disturbance
growth rates and the sizes of the drops formed at breakup, other essential features
of jet breakup, such as the formation of satellite drops interspersed between the
large primary drops, cannot be predicted by these techniques. Later authors (Yuen
1968; Nayfeh 1970; Lafrance 1975; Chaudhary & Redekopp 1980) examined the
nonlinear deformation of uncharged jets through higher-order perturbation analyses,
which associate the development of satellite drops with the growth of higher
harmonics. Yuen’s analysis, as demonstrated by Chaudhary & Redekopp, predicts
the formation of satellite drops at all unstable wavenumbers. A number of authors
have examined the dynamics of the breakup of uncharged jets using one-dimensional
approximations of the equations of motion (Lee 1974; Yarin 1993; Eggers & Dupont
1994; Papageorgiou 1995). Computational analyses of the deformation and breakup
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of uncharged jets which solve the full three-dimensional but axisymmetric or two-
dimensional equations of motion (Laplace, Stokes and Navier–Stokes) have also been
reported. Mansour & Lundgren (1990) examined the formation of satellite drops
computationally, using a boundary-element algorithm to perform a temporal analysis
of jet breakup in the inviscid limit, demonstrating reasonably good agreement with
the experimental studies of satellite drop formation by Rutland & Jameson (1970).
Ashgriz & Mashayek (1995) used a Galerkin finite-element algorithm to study the
deformation and breakup of Newtonian jets of arbitrary viscosity, demonstrating
excellent agreement with Chandrasekhar’s linear theory at small times and with
Rutland & Jameson’s experimental analysis of drop sizes.

A number of workers have examined the stability of liquid jets stressed by radial
electric fields through linear analysis. The first such analysis was performed by
Basset (1894), who extended Rayleigh’s (1879) analysis to investigate the stability
of perfectly conducting jets to axisymmetric disturbances. Basset’s analysis shows
that electrostatic stresses are stabilizing for long waves and destabilizing for short
waves, with the transition occurring at wavenumber k̃E ≈ 0.6/R̃. Errors in Basset’s
analysis were later corrected by Taylor (1969). Melcher (1963) and Huebner &
Chu (1971) extended this analysis for inviscid jets to include both axisymmetric
and non-axisymmetric disturbances. Saville (1971) examined the stability of perfectly
conducting Newtonian jets of arbitrary viscosity stressed by radial electric fields
to infinitesimal amplitude axisymmetric and non-axisymmetric disturbances, showing
that electrostatic stresses in this configuration tend to destabilize the non-axisymmetric
modes. For highly viscous jets, viscous damping of axisymmetric disturbances
leads to a situation where the sinuous mode becomes the most unstable (Saville
1971; Cloupeau & Prunet-Foch 1989; Yarin, Kataphinan & Reneker 2005). This
phenomenon is observed experimentally as so-called kink instabilities. López-Herrera,
Riesco-Chueca & Gañan-Cálvo (2005) performed a linear stability analysis of the
problem for imperfectly conducting liquid jets based on the Taylor–Melcher leaky-
dielectric model (Melcher & Taylor 1969; Saville 1997).

There have been few studies of the nonlinear dynamics and breakup of liquid jets
stressed by radial electric fields. Setiawan & Heister (1997) performed a temporal
analysis of the axisymmetric breakup of a perfectly conducting liquid jet stressed by
a radial electric field in the inviscid limit, using a three-dimensional but axisymmetric
boundary-element algorithm similar to that used by Mansour & Lundgren (1990).
These authors prescribed the value of the electric potential on the surface of their
jet and considered primarily breakup at very high electric field strengths, reporting
results for jet breakup times and for the sizes of the primary and satellite drops
formed at pinch-off. While these authors show favourable agreement between the
results of their algorithm at small times with Melcher’s linear theory, a number
of the results reported in that work appear to be mesh dependent. López-Herrera,
Gañan-Cálvo & Perez-Saborid (1999) studied axisymmetric jet breakup for perfectly
conducting Newtonian jets stressed by radial electric fields using a one-dimensional
algorithm based on the viscous Lee model (Lee 1974). In contrast to Setiawan &
Heister, these authors prescribed the value of the surface charge carried by their jets.
López-Herrera et al.’s analysis is restricted to low to moderate viscosities and electric
field strengths, as these are the conditions for which axisymmetric disturbances grow
much faster than non-axisymmetric ones (Melcher 1963; Saville 1971; Yarin et al.
2005). These authors report, among other things, the electric field strength, viscosity
and disturbance wavenumber dependence of jet breakup times and the sizes and
charges of the drops formed at pinch-off. López-Herrera & Gañan-Cálvo (2004)
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later compared the predictions of this one-dimensional algorithm with experiments,
approximating an axisymmetric electric field by using widely spaced parallel-plate
electrodes. Their interest was primarily concerned with influence of viscosity and
electric field strength on the distribution of volume and charge between the primary
and satellite drops formed at pinch-off. These authors observed reasonably good
agreement between the predictions of their algorithm and experiments, particularly
at low to moderate electric field strengths. López-Herrera & Gañan-Cálvo reported
results over a narrow range of the dimensionless ratio of the viscous to surface tension
force or the Ohnesorge number, NOh, in that 0.079 � NOh � 0.271.

One-dimensional models such as the viscous Lee model and others based on the
so-called slender-jet equations (Eggers 1993; Yarin 1993; Papageorgiou 1995) have
been shown to be highly accurate in predicting the gross phenomena associated
with capillary breakup, including breakup times and the sizes of the drops formed
at pinch-off. However, direct comparison with more robust and accurate techniques
which solve the full three-dimensional but axisymmetric or two-dimensional equations
of motion reveal that, while these one-dimensional algorithms can be very accurate,
their accuracy is usually limited to some portion of the parameter space of the
problem at hand (Yildirim & Basaran 2001; Ambravaneswaran, Wilkes & Basaran
2002).

The goal of this work is to examine computationally through a temporal analysis
the axisymmetric deformation and breakup of perfectly conducting, Newtonian jets
of arbitrary viscosity stressed by the application of a radial electric field. Section 2
presents the governing equations, and boundary and initial conditions, and details
the numerical methods used. This section describes a robust and accurate Galerkin
finite-element algorithm that has been developed to solve the three-dimensional but
axisymmetric Navier–Stokes system and Laplace’s equation. This algorithm is similar
to the algorithms used in Chen, Notz & Basaran (2002) and Notz & Basaran (2004),
which have been shown to be extremely accurate at tracking capillary breakup all the
way to pinch-off. Both Setiawan & Heister (1997) and López-Herrera & Gañan-Cálvo
(2004) in their studies of charged inviscid and moderately viscous jets, respectively,
have continued their calculations until the dimensionless minimum radius of the jet
is about 0.01. Chen et al. (2002), among others, have shown that one must typically
continue calculations until the neck radius is about an order of magnitude smaller
than this value to gain insights into the local dynamics at the incipience of breakup
and to capture fully the formation of satellites. Additionally, this section describes
a hybrid Galerkin finite-element algorithm that has been developed which couples
a one-dimensional slender-jet description of the equations of motion with a three-
dimensional but axisymmetric representation of the electric field external to the jet.
Section 3 presents computational results and gives a detailed comparison of the
algorithms used. Breakup times and the sizes and charges of the drops formed at
pinch-off are reported for a wide range of wavenumbers, viscosities and electric field
strengths. The mechanisms for satellite formation in charged jets are discussed in
detail, and the Coulombic stability of the drops formed at pinch-off is examined.
A discussion of the dynamics of pinch-off is also given. Concluding remarks are
presented in § 4.

2. Mathematical formulation and numerical analysis
The system of interest (figure 2) consists of an axisymmetric perfectly conducting

liquid filament surrounded by an insulating gas of permittivity ε that is in turn
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Figure 2. Definition sketch.

bounded by a concentric cylindrical electrode of radius R̃2. The liquid comprising
the filament is an incompressible, Newtonian fluid of constant and spatially uniform
density ρ and viscosity µ. The gas enveloping the filament is dynamically inactive
and exerts a constant pressure, which is taken as the datum level of pressure, on the
filament. The surface tension γ of the liquid–gas interface is constant and spatially
uniform. Both the electrode and the jet are equipotentials, and the potential difference
between them is Φ̃0 for all times t̃ . For the temporal analyses of electrocapillary jet
breakup that are of interest in this work, the frame of reference travels with the
filament. In this frame, the filament is quiescent and has a uniform radius R̃1 for
times t̃ < 0. At time t̃ = 0, the free surface of the filament is subjected to an axially
periodic perturbation of magnitude ε̃ and axial wavenumber k̃ (or wavelength λ̃, with
λ̃= 2π/k̃), generating an electrocapillary pressure gradient along the jet which drives
fluid flow for times t̃ > 0.

For mathematical convenience, a cylindrical coordinate system (r̃ , θ, z̃) is employed
with the common axis of the filament and the electrode coinciding with the z̃-direction.
The formulation is independent of the meridional angle θ as only axisymmetric
configurations are considered. The portion of the physical domain of interest occupied
by the filament at time t̃ is denoted Ω1, and the remainder, comprised of the
surrounding gas, is denoted Ω2. Sf , Sc and Se, then, denote the liquid–gas interface, the
centreline of the filament, and the inner surface of the electrode, respectively. Owing to
symmetry, the physical domain can be restricted axially to half a wavelength, λ̃/2. The
upper and lower boundaries of Ω1 (Ω2), denoted S1,t (S2,t ) and S1,b (S2,b), respectively,
are then defined such that S1,t (S2,t ) is located at the neck (i.e. the narrowest point)
and S1,b (S2,b) is located at the swell (i.e. the widest point) of the initial perturbation
of the free surface, with z̃ = 0 corresponding to the axial location of S1,b(S2,b).

Throughout this paper, for consistency of nomenclature, variables appearing with
a tilde over them are the dimensional analogues of variables that appear without
a tilde. For succinctness, the governing equations, initial conditions (ICs), boundary
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conditions (BCs) and results are presented hereinafter in dimensionless form. The
characteristic length, time and electric potential are, respectively, the unperturbed

filament radius R̃1, capillary time scale tc ≡
√

ρR̃3
1/γ , and potential difference between

the electrode and the jet Φ̃0. The characteristic scale for surface charge density is γ /Φ̃0.
The dimensionless groups governing the dynamics of the system are the Ohnesorge

number NOh ≡
√

µ2/γρR̃1, which compares the relative importance of viscous forces
to capillary forces, the electric Bond number NE ≡ εΦ̃2

0/2γ R̃1, which compares the
relative importance of electrostatic forces to capillary forces, the wavenumber k = R̃1k̃,
the electrode radius R = R̃2/R̃1, and the perturbation amplitude ε = ε̃/R̃1. Though not
necessary, it will be advantageous later to define an additional dimensionless group,
N ′

E ≡ 2NE/ log2(R). A brief explanation of the choice of parameter values examined
in this work and of the appropriateness of the perfect-conductor model is given in
Appendix A.

The dynamics of the filament are governed by the Navier–Stokes system,

∇· v = 0, (2.1)

∂v

∂t
+ v · ∇v − NOh ∇· T = 0, (2.2)

where v is the velocity vector and T is the stress tensor, T= −pI+(∇v+(∇v)T ), which
is measured in units of µ/tc. The electric field E in the gas surrounding the filament
is given by the negative gradient of the scalar potential Φ and is necessarily zero
in the perfectly conducting filament. The electric potential is governed by Laplace’s
equation:

∇2Φ = 0. (2.3)

Equations (2.1) and (2.2) in Ω1 and (2.3) in Ω2 are solved subject to the kinematic
(2.4) and traction (2.5) BCs along the free surface Sf :

n · (v − vs) = 0, (2.4)

n · [T ] − N−1
Oh (−2H) n = 0, (2.5)

where −2H = ∇S · n is twice the local mean curvature, n is the outward pointing unit
normal to Sf , and vs is the local velocity of Sf . Equation (2.4) requires that there be
no mass flux across Sf , while (2.5) equates the jump in the local stress vector across
the free surface to the local capillary pressure. Here, the jump in the local stress vector
is n · [T ] = n · (TE −T), where TE is the electrostatic Maxwell stress tensor (Melcher &
Taylor 1969),

TE = NE(2EE − E2I). (2.6)

Because of the periodic nature of the initial disturbance, the shear stress and axial
component of the velocity v = ez · v vanish along S1,b and S1,t ,

er ez:T= 0, (2.7)

v = 0, (2.8)

where er and ez are the radial and axial unit vectors, and the axial component of the
electric field in the gas surrounding the filament likewise vanishes along S2,b and S2,t ,

ez · E = −ez · ∇Φ = 0. (2.9)
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Similarly, because of axisymmetry, the shear stress and the radial component of the
velocity u = er · v vanish along the centreline of the filament Sc:

ezer :T = 0, (2.10)

u = 0. (2.11)

The Dirichlet conditions on the electric potential described above are

Φ = 0 (2.12)

along Sf , and

Φ = 1 (2.13)

along Se.
In this work, the breakup of electrified jets in the Stokes flow limit is also examined.

Here, the appropriate time scale is µR̃1/γ , rather than the capillary time scale tc used
in the Newtonian case. The characteristic length and electric potential scales used for
Newtonian jets (R̃1 and Φ̃0) are retained. The dimensionless Navier–Stokes equation,
(2.2), is replaced with the dimensionless Stokes equation,

∇ · T = 0, (2.14)

where T is measured in units of γ /R̃1, and the traction BC, (2.5), is modified to reflect
the change of scales:

n · [T] − (−2H) n = 0. (2.15)

The dimensionless forms of the remaining governing equations and BCs are the same
as those used in the Newtonian case. In the Stokes limit, NOh is eliminated as a
parameter.

2.1. Development of the two-dimensional algorithm

In this subsection, an algorithm is developed to solve the full three-dimensional but
axisymmetric problem described above, which is hereinafter referred to as the two-
dimensional algorithm. The system of spatially two-dimensional partial differential
equations (PDEs) described by (2.1), (2.2) and (2.3) and BCs described by (2.4)–(2.13)
are solved by a method of lines, with the Galerkin/finite-element method (G/FEM)
(Strang & Fix 1973) for spatial discretization and an adaptive finite-difference
technique for time integration (Gresho, Lee & Sani 1980). Mixed interpolation
(Huyakorn et al. 1978) is used in expanding v, p and Φ , where bilinear basis functions
are used for expanding p and biquadratic basis functions are used for expanding v

and Φ . The physical domain is subdivided into a set of smaller sub-domains, or
elements. Each element in the physical domain (r, z) is isoparametrically mapped to
a unit square in the computational domain (ξ, η).

The presence of a deforming free surface requires that the mesh used to tessellate
the spatial domain be able to move and deform. To accomplish this, a new adaptive
tessellation method that combines desirable features of both elliptic and algebraic
mesh generation, as described in Appendix B.1, is used. The elliptic mesh generation
algorithm used is based on the method of Christodoulou & Scriven (1992). Here,
a weighted combination of functionals imposing smoothness of coordinate lines,
functionals imposing orthogonality of coordinate lines, and regularization terms
allowing for controlled distribution of elements is constructed and employed to
determine the locations of the N mesh points (ri, zi), i = 1, . . . , N . The resulting set
of PDEs is cast as Galerkin weighted residuals, with (ri, zi) expanded in biquadratic
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basis functions. These weighted residuals are solved simultaneously with the weighted
residuals of the physical equations.

The spatial discretization of the problem by G/FEM results in a system of nonlinear
differential and algebraic equations (DAEs). This system is integrated in time using
a predictor–corrector method, with time derivatives at each time step approximated
by either a first-order backward difference or a second-order trapezoid rule. To
smooth unphysical transients that arise from the application of inconsistent ICs,
eight backward difference steps are used initially (Luskin & Rannacher 1982; Brenan,
Campbell & Petzold 1996). Subsequent time steps use the trapezoid rule, with the
step size determined adaptively. A first-order forward difference predictor is used with
the backward difference corrector, and a second-order Adams–Bashforth predictor is
used with the trapezoid rule corrector.

After spatial and temporal discretization of the problem, the resulting system of
algebraic equations is solved iteratively using a fully coupled Newton’s method with
an analytically computed Jacobian. The correctness of the Jacobian is demonstrated
by the quadratic convergence of Newton’s method. A frontal solver based on the
algorithm of Hood (1976) is used to solve the system of algebraic equations for each
Newton iteration. Newton iterations are continued until the L2 norm of both the
residuals and updates falls below 10−6. Typically, this requires two to four Newton
iterations per time step. Computations are continued until the minimum jet radius
hmin reaches 2 × 10−3.

In addition to mesh refinement, described in Appendix B.1, a number of tests
are performed to determine the correctness and accuracy of the two-dimensional
algorithm. For each simulation, the computed jet volume V is found to vary by less
than 0.05% over the course of the computation. Additionally, for uncharged jets
(NE =0), computed results obtained using the two-dimensional algorithm, including
breakup times and the sizes of the drops formed at pinch-off, are found to be in
excellent agreement with results reported by Ashgriz & Mashayek (1995). Further,
computational results are compared with linear theory, as described in § 3.1. A
comparison of computed results with previous works involving electrified jets is given
in subsequent sections.

2.2. Development of the one-dimensional algorithm

In this subsection, a hybrid algorithm, which is hereinafter referred to as the one-
dimensional algorithm, is developed to solve simultaneously the full three-dimensional
but axisymmetric Laplace equation in Ω2 coupled with a slender-jet representation
of the Navier–Stokes system in Ω1. Following Yarin (1993), Eggers & Dupont (1994)
and Papageorgiou (1995), the spatially two-dimensional Navier–Stokes system in
Ω1 is reduced to a spatially one-dimensional system of PDEs. This spatially one-
dimensional theory keeps only the leading-order terms in Taylor series expansions
in the radial coordinate of the axial velocity v and pressure p, but retains in full
the curvature and Maxwell stress terms in the traction BC. Previous studies (Eggers
1993, 2005; Yarin 1993; Eggers & Dupont 1994; Zhang, Padgett & Basaran 1996;
Ambravaneswaran & Basaran 1999; Yildirim & Basaran 2001; Ambravaneswaran
et al. 2002) justify retention of the full curvature term, as its retention has been shown
to yield a superior description of nonlinear interface shape evolution than can be
obtained with the truncated curvature required for proper slender-jet asymptotics.
Both López-Herrera et al. (1999) and López-Herrera & Gañan-Cálvo (2004) retain
the full Maxwell stress in their analyses of charged jet breakup.
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The resulting set of one-dimensional equations governing v ≡ v(z, t) and h ≡ h(z, t),
where r =h(z, t) is the free surface location, are

∂h

∂t
+ v

∂h

∂z
+

1

2

∂v

∂z
h = 0, (2.16)

∂v

∂t
+ v

∂v

∂z
+ NOh

∂P
∂z

− 3NOh

1

h2

∂

∂z

(
h2 ∂v

∂z

)
= 0. (2.17)

Here, P is the electrocapillary pressure, i.e. the sum of capillary and electrical pressures,

P =
−2H
NOh

− 1

NOh

(n · TE · n)

=
1

NOh

[
1

h(1 + (∂h/∂z)2)1/2
− ∂2h/∂z2

(1 + (∂h/∂z)2)3/2

]
− NE

NOh

[(
∂Φ

∂r

)2

+

(
∂Φ

∂z

)2
]

(2.18)

and pressure p in the bridge, to the leading-order, is p = P − NOh∂v/∂z. In slender-
jet theory, the radial velocity is simply u = − (r/2)∂v/∂z. Boundary conditions to
complete the system of PDEs require that ∂h/∂z = 0 and v = 0 at the upper and lower
boundaries of the one-dimensional domain, i.e. z = 0, z = π/k.

As with the two-dimensional algorithm, the system of PDEs described by (2.3),
(2.16) and (2.17) is solved by a method of lines, with G/FEM for spatial discretization
and adaptive finite differences for time integration. The unknowns h and v, and an
additional auxiliary unknown Ω ≡ ∂h/∂z (Zhang et al. 1996), are expanded using a set
of quadratic basis functions. The one-dimensional domain, 0 � z � π/k, is divided into
a series of elements, and each element in the physical domain (z) is isoparametrically
mapped to a unit line segment in the computational domain (ξ ).

Solution of Laplace’s equation in Ω2 is accomplished in a manner analogous to
that described in § 2.1. As with the two-dimensional algorithm, an adaptive mesh
is required to tessellate Ω2 owing to the presence of the free surface, Sf . For the
one-dimensional algorithm, the method of spines (Kistler & Scriven 1994; Wilkes,
Phillips & Basaran 1999) is used to determine the location of the N mesh points in
Ω2. Here, spines of constant z, which are uniformly distributed along the length of the
jet, correspond to the η coordinate lines (Sf is a ξ coordinate line), and a weighting
function is applied to concentrate the ξ coordinate lines near Sf . This technique is
prone to failure when Sf becomes very deformed, i.e. when the magnitude of ∂h/∂z

becomes very large or when the shape function h is not a single-valued function of z.
However, the same drawback is inherent in the slender-jet description of the dynamics,
which requires that h be a single-valued function of z, so that the use of constant z

spines poses no additional drawbacks. Further, this technique is computationally less
expensive than elliptic mesh generation used in the two-dimensional algorithm, as the
mesh point locations are not solved for independently, but are instead determined
along each spine from the free-surface coordinate h and the prescribed weighting
function.

After spatial discretization of the problem is accomplished, temporal discretization
of the resulting system of nonlinear DAEs is performed. The same time integration
algorithm used in the two-dimensional algorithm is used in the one-dimensional
algorithm. After spatial and temporal discretization, the resulting system of nonlinear
algebraic equations is solved iteratively using a fully coupled Newton’s method
with an analytically computed Jacobian. A new arrow solver, similar to that developed



84 R. T. Collins, M. T. Harris and O. A. Basaran

earlier by Thomas & Brown (1987), is used to solve the system of algebraic equations
at each Newton iteration. The criteria used for judging convergence of Newton’s
method and deciding when breakup has occurred follow those already described in
the previous subsection.

Mesh refinement for the one-dimensional algorithm is described in Appendix B.2.
Tests used to determine the correctness and accuracy of the one-dimensional algorithm
are similar to those used with the two-dimensional algorithm. For each computation
performed, the total jet volume V varies by less than 0.5% from its initial value.
Comparisons of computed results with linear theory and an extensive comparison
of computed results from the two- and one-dimensional algorithms are given in
subsequent sections.

The slender-jet algorithms developed by López-Herrera et al. (1999) and López-
Herrera & Gañan-Cálvo (2004) do not prescribe a fixed electric potential for the
jet, as is done here, but instead impose that the total surface charge carried by
the jet is temporally constant; the electric potential of the jet (which is modelled
as a perfect conductor and hence as an equipotential) is computed at each time
step to satisfy this constraint. A direct comparison of results obtained with the
one-dimensional algorithm to those reported in these works, therefore, is
inappropriate, as the problems being investigated are physically different.

3. Results and discussion
3.1. Comparison of the one- and two-dimensional

algorithms with linear theory

Although linear stability analysis is incapable of predicting a number of important
features of jet breakup, e.g. the formation of satellite droplets, it is an invaluable
tool because it provides information about regions of the parameter space for which
a liquid filament is stable or unstable and yields the growth rate of disturbances.
Previous works with uncharged filaments have shown that growth rates obtained both
experimentally (Goedde & Yuen 1970) and computationally (Ashgriz & Mashayek
1995) agree strikingly well with linear theory, with agreement breaking down only
in the early and final stages of breakup (see below). As a consequence, linear theory
can provide reasonable estimates of breakup times. These facts are exploited in this
work for the purposes of code validation and developing intuition into the underlying
physics which is essential for understanding the nonlinear results. Growth rates
and breakup times obtained from simulations using the one- and two-dimensional
algorithms are compared below with linear theory.

The appropriate dispersion relation for this analysis is a slight modification of a
result due to Saville (1971), who examined the linear stability of a perfectly conducting
Newtonian liquid jet stressed by a radial electric field to an infinitesimal amplitude
surface disturbance that is proportional to exp [ωt + ikz], where ω is the growth rate
of the disturbance. Saville places the electrode at infinity, in effect eliminating R as a
parameter. When cast in terms of the dimensionless groups used in this work, Saville’s
dispersion relation, when only axisymmetric motions are considered, is

Ω(k, R, NE)

N2
Oh

k
I1(k)

I0(k)
= (β4 − k4) + 2k

(
kI0(k) − I1(k)

I0(k)

)

×
[
(β2 + k2) − 2k2 I1(k)

I1 (β)

(
βI0(β) − I1(β)

kI0(k) − I1(k)

)]
(3.1)
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with

Ω = 1 − k2 − 2NE

log2(R)

(
1 − k

K1(k)

K0(k)

)
. (3.2)

Here, In and Kn denote modified Bessel functions of the first and second kind of
order n, respectively, and β2 ≡ k2 + ω/NOh. The presence of a term involving R in
(3.2) stems from differences in the characteristic scales used in the two formulations.
Instead of using the potential difference Φ̃0 as a characteristic scale for the electric
potential, Saville uses the electric field at the free surface of the (unperturbed)
jet Ẽ0. This leads to a different definition of the electric Bond number in Saville’s
formulation, N ′

E ≡ εR̃1Ẽ
2
0/γ . It is trivial to show that Ẽ0 = −Φ̃0/(R̃1 ln(R̃2/R̃1)), whence

N ′
E = 2NE/ log2(R).
The quantity Ω defined by (3.2) is proportional to the difference in electrocapillary

pressure (i.e. pC +pE , where pC ≡ −2H/NOh and pE ≡ (−n · TE · n)/NOh) between the
neck and the swell and hence may be interpreted as the electrocapillary driving force
for flow from the neck to the swell. The sign of Ω determines the stability of the jet to
the applied surface disturbance: a jet will be unstable (stable) to a surface disturbance
for which Ω > 0 (Ω < 0). It is worth noting here that there exists a wavenumber kE

such that kEK1 (kE) /K0 (kE) = 1 (kE ≈ 0.595) for which the electrostatic contribution
to Ω vanishes and the linear growth rate of the surface disturbance is independent
of NE .

To account properly for a finite R requires that (3.2) be modified as follows:

Ω = 1 − k2 − N ′
E

(
1 + k

I1(k)K0(kR) + I0(kR)K1(k)

I0(k)K0(kR) − I0(kR)K0(k)

)
. (3.3)

Equations (3.1) and (3.3) reduce in the inviscid limit to Melcher’s (1963) dispersion
relation. Saville’s dispersion relation is recovered in the limit as R → ∞ (R >> 1/k)
holding N ′

E constant. For the modified dispersion relation, kE = kE (R) with kE(R) →
0.595 in the limit as R → ∞ (R >> 1/k). Also, when N ′

E =0, equations (3.1) and (3.3)
reduce to Chandrasekhar’s (1961) dispersion relation for an uncharged filament.

The influence of electrostatic stresses on jet stability can be elucidated by examining
two limiting forms of (3.3). In the long-wave limit (k → 0), for which capillary stresses
are destabilizing, Ω → 1 − N ′

E[1 − 1/ log(R)]. In this limit, for sufficiently large R,
electrostatic stresses are stabilizing, acting either to mitigate the influence of capillary
stresses or, for sufficiently large N ′

E , to reverse the direction of the driving force
entirely, rendering the jet stable. In the short-wave limit (k → ∞), for which capillary
stresses are stabilizing, Ω → −k2 + N ′

E[k coth(k(R − 1))], or, for R − 1 >> 1/k,
Ω → −k2 + N ′

Ek. Here, as opposed to the long-wave limit, electrostatic stresses
are destabilizing. In light of these limiting cases, several prominent features of the
dispersion relation described by (3.1) and (3.3) become apparent, the most obvious
being the existence of a wavenumber kE demarcating the transition from stabilizing
electrostatic stresses in the long-wave limit to destabilizing electrostatic stresses in
the short-wave limit. Other features of the dispersion relation are best viewed in
relation to Chandrasekhar’s result for an uncharged filament, where the range of
unstable disturbance wavenumbers is 0 � k < kcrit , with the upper cutoff wavenumber
for stability kcrit =1. For a charged filament, kcrit increases with increasing N ′

E owing
to the destabilizing influence of electrostatic stresses for k > kE . Additionally, for
sufficiently large N ′

E , the stabilizing influence of electrostatic stresses in the long-wave
limit leads to the development of a stable region 0 � k < k′

crit , so that the range of
unstable wavenumbers becomes k′

crit < k < kcrit . The wavenumber kmax associated with
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Figure 3. Wavenumber dependence of growth rates. Growth rates from linear theory (lines)
are shown along with computed growth rates obtained from two-dimensional simulations
(symbols) for (a) moderately viscous filaments of NOh =0.1 and (b) viscous filaments of
NOh = 1.0 when R = 10 and ε =0.01. Results are shown for NE = 0 (—— , ©), NE = 1 (- - -,
�), NE = 2 - · -, �) and NE = 4 (– –, �).

the maximum growth rate for an uncharged filament increases with decreasing NOh,
asymptotically approaching Rayleigh’s (1879) result of kmax ≈ 0.697 in the inviscid
limit. The nature of electrostatic stresses as described above require for a given NOh

that kmax increases with increasing N ′
E .

To compare results from the one- and two-dimensional algorithms to the dispersion
relation described by (3.1) and (3.3), the growth rate ω of the surface disturbance
predicted by the simulations is determined as described in Appendix C. Figures 3
and 4 compare computed growth rates from two-dimensional simulations with those
obtained from the dispersion relation described by (3.1) and (3.3). Excellent agreement
between the two techniques is demonstrated over a wide range of the parameter space.
The largest deviations (∼1 %) between the simulations and linear theory occur in the
lower limit of the range of Ohnesorge numbers examined (NOh ∼ 0.01), and much
better agreement (<0.1 %) is observed at higher NOh. A similar trend is reported
by Ashgriz & Mashayek (1995) for uncharged jets. This level of agreement lends
strong support to the accuracy of the two-dimensional algorithm. Figure 3 shows the
variation of growth rates with wavenumber both for uncharged (NE =0) jets and
charged jets of various NE for moderately viscous jets of NOh =0.1 and viscous jets
of NOh =1.0. A number of the features of the dispersion relation described above
are apparent from figure 3, including the increase of kcrit and kmax with increasing
NE , the existence and location of kE , and the stabilizing (destabilizing) influence
of electrostatic stresses for k < kE (k > kE) which becomes more pronounced with
increasing NE . Further, a comparison of figures 3(a) and 3(b) shows that, at each NE ,
kmax is larger in the less viscous case. The influence of NOh on growth rates ω for
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Figure 4. Ohnesorge number dependence of growth rates. Growth rates from linear theory
(lines) are compared with results obtained from two-dimensional simulations (symbols) for
a wide range of NOh when R = 10 and ε = 0.01 for both uncharged filaments (NE = 0) and
charged filaments with NE = 4.

fixed k and R is shown in figure 4. Results are shown for both k > kE(k = 0.9) and
k < kE(k = 0.4). Examination of the dispersion relation shows that ω is independent
of NOh as the inviscid limit is approached and is inversely proportional to NOh in the
Stokes flow limit. Both of these limiting behaviours and the transition region between
them are apparent from figure 4. Figure 4 also shows that electrostatic stresses are
stabilizing for k < kE and destabilizing for k > kE for all NOh.

Growth rates obtained from one-dimensional simulations differ only negligibly from
those obtained from two-dimensional simulations and from linear theory for the entire
range of the parameter space examined. In this regard, the one- and two-dimensional
algorithms are indistinguishable.

3.2. Electrostatic stresses and breakup times

In this subsection, the time tb required for an electrified jet to break after the imposition
of a disturbance of wavenumber k and amplitude ε predicted by simulations is
compared to that obtained from linear theory. Here, tb is defined as the time required
for the minimum radius to fall below hmin = 2 × 10−3. In this paper, the effects of k,
NOh and NE on tb are examined while holding ε fixed at ε = 10−2.

Figure 5 shows the variation of computed breakup times obtained from two-
dimensional simulations with wavenumber for (a) moderately viscous jets of NOh = 0.1
and (b) viscous jets of NOh =1.0. Results are shown both for uncharged jets (NE = 0)
and for charged jets of various NE . Breakup times from linear theory, obtained
from the dispersion relation defined in § 3.1, are included for comparison (i.e. tb =
− log(ε)/ω). Figure 5 shows that the computed breakup times from two-dimensional
simulations exhibit the same qualitative trends expected from linear theory. In both
the moderately viscous case and the viscous case, computed breakup times increase
with NE for longer waves and decrease for shorter waves, with the transition occurring
in the vicinity of kE ≈ 0.6, though in the viscous case the transition occurs at a slightly
larger wavenumber. Similar results are reported by López-Herrera et al. (2005). The
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Figure 5. Influence of electrostatic stresses on jet breakup times tb . The variation of breakup
times with axial wavenumber k for (a) moderately viscous jets of NOh =0.1 and (b) viscous
jets of NOh = 1.0 is shown for uncharged (NE = 0) jets and for charged jets of various NE .
Breakup times obtained from two-dimensional simulations (symbols) are shown along with
results from linear theory (lines). Results are shown for NE = 0 (——, ©), NE = 1 (- - -, �),
NE = 2 (- · - , �) and NE = 4 (– –, �).

wavenumber kmax associated with the fastest breakup time is larger in the moderately
viscous case than in the viscous case for all NE . Further, kmax increases monotonically
with NE in both cases, as does kcrit . A quantitative comparison of computed breakup
times with linear theory shows that, for both viscous and slightly viscous jets, the
computed breakup times from two-dimensional simulations are somewhat larger
than the breakup times obtained from linear theory for long waves and are somewhat
smaller than the breakup times obtained from linear theory for short waves. This
trend is observed for all NOh and NE examined. The best agreement is obtained for
wavenumbers slightly larger than the kmax determined from linear theory for each
NOh and NE . The same phenomenon is reported by Ashgriz & Mashayek (1995) in
their study of uncharged jets.

Figures 6 and 7 show the variation of computed breakup times obtained from two-
dimensional simulations with NE for moderately viscous filaments of NOh = 0.1 and
viscous filaments of NOh = 1.0, respectively, for several wavenumbers. Breakup time
predictions from linear theory are included for comparison. Recall that linear theory
requires that there be no electrostatic influence on the dynamics of the filament,
and hence on the breakup time, for kE ≈ 0.6, as may be seen in figures 6(c) and
7(c). Although linear theory tends somewhat to underestimate breakup times in this
range of wavenumbers, for low to moderate values of NE , breakup times obtained
from two-dimensional simulations follow generally the trends expected from linear
theory: computed breakup times increase monotonically with NE for k < kE , remain
essentially unchanged with NE for k ≈ kE , and decrease monotonically with NE for
k > kE . At higher NE , however, these trends begin to break down as nonlinear effects
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Figure 6. Influence of electrostatic stresses on jet breakup times tb . Breakup times for
moderately viscous jets of NOh = 0.1 from two-dimensional simulations are shown for
wavenumbers in the vicinity of kE ≈ 0.6 at various NE alongside tb predicted from linear
theory when R = 10. For low to moderate electric stresses, trends in tb follow the expectations
of linear theory, while in the limit of high NE nonlinear effects become increasingly more
important. (a) k = 0.4, (b) 0.5, (c) 0.6, (d) 0.7. �, two-dimensional algorithm; �, linear theory.

become increasingly important. This is not too surprising, as satellite drops grow
larger and begin to develop earlier for highly charged jets than for uncharged or
moderately charged jets, while primary drops elongate radially more quickly and to
a greater extent at higher NE . Neither of these characteristics of highly charged jet
breakup can be accounted for by linear theory.

A comparison of breakup times tb obtained from two-dimensional and one-
dimensional simulations indicates that the one-dimensional algorithm does reasonably
well in predicting breakup times. Figure 8 shows how tb obtained from two- and
one-dimensional simulations varies with NE for (a) moderately viscous jets of
NOh = 0.1 and (b) viscous jets of NOh = 1. Breakup times from linear theory are
included for comparison. While the one-dimensional algorithm tends to underestimate
breakup times slightly in the moderately viscous case relative to the more accurate
two-dimensional algorithm, the variation of computed breakup times with NE is
substantially similar for both algorithms. In the viscous case, the two algorithms
agree strikingly well at lower Bond numbers (NE < 2), although there are significant
deviations at higher NE .

3.3. Influence of electrode radius

Results from two-dimensional simulations indicate that R = 10 is sufficiently large that
further increases in R do not significantly effect the dynamics of jet breakup for the
ranges of k, NE and NOh examined in this work (k � 0.3, 0 �NE � 5, 0.001 � NOh � 10).
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Figure 7. Same as figure 6 except for viscous jets of NOh = 1.0.
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Figure 8. Comparison of breakup times predicted by the �, one- and �, two-dimensional
algorithms. Breakup times for (a) moderately viscous jets of NOh = 0.1 and (b) viscous jets
of NOh = 1.0 from one- and two-dimensional simulations are shown for jets subjected to
perturbations of wavenumber k =0.6 for a range of electric Bond numbers when R = 10.
Breakup times obtained from linear theory, �, are shown for comparison. Considerably better
agreement between the two algorithms is observed for the moderately viscous case.
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Figure 9. Influence of electrostatic stresses on jet profiles at the incipience of pinch-off for
moderately viscous jets of NOh = 0.1 (a–d) and viscous jets of NOh = 1 (e–h). Computed jet
profiles from two-dimensional simulations are shown for both uncharged (− · −) jets, NE = 0,
and charged (——) jets, NE = 5, at hmin = 0.002 for (a, e) k = 0.4, (b, f ) k =0.5, (c, g) k = 0.6
and (d , h) k = 0.7.

Thus, for all subsequent results shown, the value of the electrode radius is fixed at
R = 10.

3.4. Electrostatic stresses and drop formation

Figure 9 highlights a number of features of drop formation from breakup of electrified
jets. In Figure 9(a–d), computed jet profiles at the incipience of pinch-off from two-
dimensional simulations are shown for moderately viscous jets of NOh = 0.1 for a
sequence of wavenumbers. Figure 9(e–h) shows jet profiles for the same sequence
of wavenumbers but for viscous jets of NOh = 1. Profiles for uncharged jets, i.e. for
NE = 0, indicated by the dash-dot curves, are shown superimposed on profiles for
charged jets (NE = 5), indicated by the solid curves. The jet profiles are shown over
an axial distance corresponding to a full wavelength, λ, centred about z = 0. Perhaps
the most significant and obvious differences between the uncharged and charged
jet profiles shown in these figures relate to the morphology of the drops formed at
pinch-off. In this work, the ligaments which connect the large primary drops (centrally
located in the profiles shown) at the incipience of pinch-off are referred to as satellite
drops, following the convention of Ashgriz & Mashayek (1995), though it should be
recognized that these ligaments can either recoil after the initial pinch-off to form a
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(a)

(b)

Figure 10. Comparison of computed jet profiles from one- and two-dimensional simulations at
the incipience of pinch-off. Here, jet profiles obtained from (a) two-dimensional simulations and
(b) one-dimensional simulations are shown for slightly viscous jets of NOh = 0.01 subjected to
perturbations of wavenumber k = 0.6 at hmin = 0.002. Note that the one-dimensional algorithm
fails prior to reaching hmin = 0.002 for NE = 5.

single satellite drop or break up to form a series of smaller satellite drops. Figure 9
shows that the primary drops formed from charged jets are smaller and significantly
more oblate or radially elongated than the primary drops formed from uncharged jets
of the same NOh and k. Furthermore, the satellite drops formed from charged jets are
significantly larger than the satellite drops formed from uncharged jets of the same
NOh and k. These phenomena have been observed for all combinations of NE , NOh and
k examined in this work and appear to be universal features of electrified jet breakup.
Furthermore, these phenomena become more pronounced as NE is increased (see
below). The satellite drops formed at pinch-off from uncharged, moderately viscous
jets, which are relatively large, exhibit cone-like structures that taper smoothly toward
the pinch-points and connect to the primary drops through very short, thin thread-like
structures. The satellite drops formed from charged, moderately viscous jets, retain
these structures, but also feature large, bulbous central regions which constitute
most of the volume of these satellites. The primary drops formed at pinch-off from
uncharged viscous jets are connected by thin thread-like satellites which exhibit small
bulbous cores at larger wavelengths, though these structures are absent at shorter
wavelengths. With charged viscous jets, however, the satellite drops formed at pinch-off
exhibit large bulbous central regions at all wavelengths (similar to those observed with
charged, moderately viscous jets) which are connected to the primary drops by long
thread-like structures that are very similar to those observed in the uncharged case.

To assess the accuracy of the one-dimensional algorithm, it is instructive at this
point to compare the shapes of the drops formed at pinch-off computed from one-
dimensional simulations with results from two-dimensional simulations. Figures 10
to 12 compare computed profiles of uncharged and charged jets at the incipience of
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Figure 11. Same as figure 10 except for moderately viscous jets of NOh =0.1.
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Figure 12. Same as figure 10 except for viscous jets of NOh = 1.0.

pinch-off obtained from two-dimensional simulations with computed jet profiles from
one-dimensional simulations for slightly viscous jets of NOh = 0.01, moderately viscous
jets of NOh = 0.1, and viscous jets of NOh =1.0, respectively. These figures demonstrate
that the one-dimensional algorithm reproduces reasonably well the qualitative and
gross features of jet profiles obtained from the two-dimensional algorithm. The
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agreement between the two algorithms is generally better for uncharged jets and
charged jets at low NE than for charged jets at higher NE . The largest deviations
occur in the vicinity of the pinch point. In the slightly viscous case, for example,
overturning of the interface of the primary drop near the pinch point, a phenomenon
which has been reported by others examining pinch-off singularities both in the
inviscid limit (Chen & Steen 1997; Day, Hinch & Lister 1998) and with Newtonian
fluids at low NOh (Wilkes et al. 1999; Chen et al. 2002), is observed with profiles from
two-dimensional simulations, but not with profiles from one-dimensional simulations.
This deviation is to be expected, as the one-dimensional algorithm requires that
the free surface be described as a single-valued function of the axial coordinate
(see § 2.2) and hence artificially precludes interface overturning. The influence of
electrostatic stresses on interface overturning is discussed at length in § 3.5. In the
viscous case, and to a lesser extent in the moderately viscous case, the computed
jet profiles from one-dimensional simulations exhibit an anomalous tapering of the
primary drop toward the pinch point which is not observed in computed jet profiles
from two-dimensional simulations and which is more pronounced at higher electric
Bond numbers. While the primary drop profiles predicted by the one-dimensional
algorithm show an increased radial elongation with increasing NE in the viscous case,
as do their counterparts predicted by the two-dimensional algorithm, the shapes of
the primary drops predicted by the one-dimensional algorithm at high NE are visibly
more bulb-like than those predicted by the two-dimensional algorithm, which are
shaped roughly like oblate spheroids. A comparison of the sizes and shapes of the
satellite drops predicted by the two algorithms yields far better agreement.

3.4.1. Electrostatic stresses and primary/satellite drop sizes

In the absence of electrostatic stresses, Ashgriz & Mashayek (1995) have shown
that the sizes of the primary and satellite drops formed at pinch-off decrease with
increasing wavenumber and that the satellite drop size is smaller for a more viscous
jet than for a less viscous jet subjected to a perturbation of the same wavenumber.
The influence of electrostatic stresses on computed primary and satellite drop sizes
is highlighted in figures 13 to 15. The results shown in these figures are from two-
dimensional simulations and report drop sizes in terms of radii of spheres having the
same volumes as the drops. Figure 13 shows how the computed sizes of the primary
drops and satellite drops formed at pinch-off vary with k at various NE for moderately
viscous jets of NOh = 0.1 and viscous jets of NOh = 1. For both moderately viscous
and viscous jets, computed primary and satellite drop sizes decrease monotonically
with increasing k at all NE . Further, primary (satellite) drop sizes decrease (increase)
with increasing NE at fixed k and NOh. For satellite drops, this trend is more
pronounced for viscous jets than for moderately viscous jets. For primary drops,
however, the opposite is true, as satellite drops are uniformly larger at fixed NE and
k for moderately viscous jets than for viscous jets. Similar trends are reported by
López-Herrera et al. (1999) and López-Herrera & Gañan-Cálvo (2004). Figure 14
shows how the computed sizes of the primary and satellite drops formed at pinch-off
vary with NE for various wavenumbers, with results reported for both moderately
viscous and viscous jets. In both cases, the computed size of satellite drops increases
nearly linearly with NE for fixed k and NOh in the range of NE examined, while the
computed primary drop size decreases monotonically with NE . Further, primary drop
size dependence on k diminishes with increasing NE . Figure 15 shows the electric
Bond number dependence of computed primary and satellite drop sizes for jets of
various NOh at fixed wavenumber (k =0.6). Computed primary (satellite) drop sizes
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Figure 13. Influence of electrostatic stresses on primary and satellite drop size. The variation
of the sizes of the primary and satellite drops formed at pinch-off with wavenumber are shown
for �, uncharged (NE = 0) jets and for charged jets with �, NE = 1; �, NE = 2; and �, NE = 4.
Results are shown for both moderately viscous jets of NOh = 0.1, (a, b), and viscous jets of
NOh = 1, (c, d).

are larger (smaller) for more viscous jets than for less viscous ones for uncharged jets
(NE = 0) and for charged jets at all NE .

Drop volumes computed using the one-dimensional algorithm agree reasonably well
with their counterparts computed using the two-dimensional algorithm. Figure 16
compares computed primary (a) and satellite (b) drop sizes, reported as radii
of equivalent spheres, obtained from two- and one-dimensional simulations for
moderately viscous jets of NOh = 0.1 and viscous jets of NOh =1.0 over a range of NE

at fixed wavenumber. While the one-dimensional algorithm tends to underestimate
slightly the primary drop volumes and to overestimate slightly the satellite drop
volumes relative to the two-dimensional algorithm for the moderately viscous jets, the
same qualitative behaviour, i.e. a monotonic decrease (increase) in primary (satellite)
drop volumes with increasing NE , is observed with both algorithms. Better agreement
between the two algorithms is observed in the viscous case, particularly at low NE .

López-Herrera et al. (1999) report that satellite sizes increase with NE for the
region of the parameter space that they examined with their slender-jet algorithm.
For the range of wavenumbers examined in that work (k > 0.57), these authors report
good agreement with the inviscid analysis of Setiawan & Heister (1997) for NE = 2.5
and R = 10. Setiawan & Heister report that satellite volumes increase with NE for
short waves in the inviscid case, but actually decrease with NE for long waves,
with the transition wavenumber demarcating the two regimes increasing with NE .
A jet profile near pinch-off is shown in that work for a highly charged (NE = 5) jet
subjected to a perturbation of large wavelength, k =0.4, when R = 10. The profile
shows a very small satellite drop and a primary drop that features a large central
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Figure 14. Influence of electrostatic stresses on primary and satellite drop size. The variation
of the sizes of the primary and satellite drops formed at pinch-off with electric Bond number
are shown for jets subjected to perturbations of various wavenumbers. Results are shown for
both moderately viscous jets of NOh = 0.1, (a, b), and viscous jets of NOh = 1, (c, d). �, k = 0.4;
�, 0.5; �, 0.6; �, 0.7.
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Figure 15. Influence of electrostatic stresses on primary and satellite drop size. The variation
of the sizes of the (a) primary and (b) satellite drops formed at pinch-off with electric Bond
number are shown for jets subjected to perturbations of wavenumber k = 0.6. Results are
shown for �, slightly viscous jets of NOh = 0.01; �, moderately viscous jets of NOh = 0.1; and
�, viscous jets of NOh = 1.0.
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Figure 16. Comparison of primary and satellite drop sizes predicted from one- and
two-dimensional (1D and 2D) simulations. The variation of the sizes of (a) primary and (b)
satellite drops formed at pinch-off predicted from one- and two-dimensional simulations with
electric Bond number are shown for jets subjected to perturbations of wavenumber k = 0.6.
Results are shown for both moderately viscous jets of NOh = 0.1 and viscous jets of NOh = 1.0.

peak separated by troughs from two additional large peaks located symmetrically
about z = 0. Simulations of highly charged jets subjected to perturbations of large
wavelengths using the two-dimensional algorithm developed in this work do not
support these observations. Figure 17 shows jet profiles near pinch-off for uncharged
(NE = 0) and highly charged (NE =5) jets subjected to long-wave perturbations with
k = 0.4 spanning a large range of NOh. For each NOh, the satellite drop is significantly
larger in the highly charged case than in the uncharged case. Note that for the highly
charged jets, the primary drops do not exhibit multiple peaks but have the same
oblate shape as is observed for highly charged shorter wave jets (see, for example,
figure 9). While undulations on the surface of the satellite drops are visible for
the slightly viscous (NOh = 0.01) and very slightly viscous (NOh = 0.001) jet profiles
for NE = 5, these undulations do not grow at a rate sufficient to produce the sorts
of jet profiles reported by Setiawan & Heister even in the very slightly viscous
case.

3.4.2. Electrostatic stresses and drop charge at pinch-off

The stabilities of the primary and satellite drops formed at pinch-off from the
breakup of an electrified jet depend both on their sizes and shapes and on the
charges that they carry. To assess the stability of these drops, following López-
Herrera et al. (1999) and López-Herrera & Gañan-Cálvo (2004), we report here the
ratio of the charge Q borne by the primary or satellite drop at pinch-off to the
value of the charge that is borne by a spherical drop at the Rayleigh (1882) limit
of stability, which is hereinafter referred to as the Rayleigh charge limit, QR , in lieu
of the charges on the drops themselves. In terms of the dimensionless groups used
in this work, QR =

√
96πNEV , where V represents the dimensionless drop volume. A

spherical drop, bearing charge in excess of QR , is unstable because the destabilizing
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(a) NOh = 1.0 (b) NOh = 0.1 (c) NOh = 0.01 (d) NOh = 0.001

Figure 17. Influence of Ohnesorge number on profiles at pinch-off of jets that are subjected
to long-wave perturbations, k = 0.4. Jet profiles are shown for uncharged jets (− · −) and
highly charged jets (——) when NE = 5 for (a) NOh = 1.0, (b) NOh = 0.1, (c) NOh = 0.01 and
(d) NOh = 0.001. The satellite drop is significantly larger for the charged jet than for the
uncharged jet for all NOh.

effect of Coulombic charge repulsion is stronger than the stabilizing effect of surface
tension. As the drops formed at pinch-off are highly deformed (particularly so for the
satellite drops), a charge ratio of Q/QR < 1 does not guarantee the stability of the
drops after pinch-off (Adornato & Brown 1983; Basaran & Scriven 1989). Rather,
Q/QR = 1 represents an upper limit for Coulombic stability of the drops formed at
pinch-off, and, for cases where Q/QR > 1, it is certain that the drops will eventually
break up into two or more smaller drops.

Figure 18 shows the variation of computed charge ratios from two-dimensional
simulations with wavenumber for the primary and satellite drops formed at pinch-off
from both moderately viscous jets of NOh =0.1 and viscous jets of NOh = 1.0 at
various electric Bond numbers. The charge ratio for the primary drops, (Q/QR)main,
is relatively insensitive to k and NOh, but increases substantially as NE is increased
at fixed k. For the range of low to moderately high electric Bond numbers shown,
however, the primary drops are Coulombically stable in both the moderately viscous
case and the viscous case at all k. For moderately viscous jets, the charge ratio for
satellite drops (Q/QR)sat increases with NE at fixed k and decreases monotonically
with increasing k at fixed NE . This is due in part to a partial shielding of the
satellite drops from the electric field caused by the proximity of the large primary
drops. This shielding is more effective at larger wavenumbers simply because the
satellite drops are shorter than those formed at smaller wavenumbers. These results
are consistent with results reported by López-Herrera & Gañan-Cálvo (2004) for
moderately viscous jets. With regard to viscous jets, the wavenumber dependence of
(Q/QR)sat is somewhat more complex. Here, at low electric Bond numbers, (Q/QR)sat

increases monotonically with k, whereas at higher electric Bond numbers, (Q/QR)sat

exhibits a minimum; further, (Q/QR)sat typically decreases with NE at fixed k in the
viscous case. At low NE , the satellite drops formed at pinch-off are similar in shape to
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Figure 18. Influence of NE on drop charge. �, NE =0.5; �, 1.0; �, 2.0; �, 4.0. Here, the
ratios of the charge on the primary drop and the satellite drop to the Rayleigh charge
limit (QR =

√
96πNEV ) obtained from two-dimensional simulations are shown for moderately

viscous jets of NOh =0.1, (a, b), and viscous jets of NOh = 1.0, (c, d), for various NE over a
range of wavenumbers k.

satellite drops formed from uncharged jets (see, for example, figure 9). The satellites
formed from jets at smaller wavenumbers have central bulbous cores which contain
most of their volume. These structures are absent in satellite drops formed from jets
with larger wavenumbers, which are are essentially long thread-like filaments. Because
they lack central cores, these satellites have much larger surface to volume ratios than
their counterparts formed from jets at larger wavenumbers. The combination of high
surface charge density (a consequence of the slenderness of the thread-like satellites)
and very high surface to volume ratio is extremely unstable, so that even with
shielding provided by the proximity of the primary drops, (Q/QR)sat increases with k

for viscous jets at low NE . At higher NE , the satellites formed at pinch-off from viscous
jets have more substantial bulbous core structures at smaller wavenumbers, and small
bulbous core structures are observed at larger wavenumbers; only at wavenumbers
approaching kcrit do the satellite drops formed at pinch-off resemble long thread-like
filaments. Thus, at higher NE , (Q/QR)sat decreases with k at lower wavenumbers, as a
consequence of the increased effectiveness of the shielding provided by the proximity
of the primary drops, and increases with k at higher wavenumbers as a consequence
of the thread-like structure of the satellites.

Figure 19 shows the variation of computed (Q/QR)main and (Q/QR)sat from two-
dimensional simulations with electric Bond number at various wavenumbers for both
moderately viscous jets of NOh = 0.1 and viscous jets of NOh = 1. In both cases,
(Q/QR)main increases monotonically with NE at all wavenumbers, and only a slight
dependence on k is observed at fixed NE . In the moderately viscous case, (Q/QR)sat

increases monotonically with NE for all wavenumbers and decreases with increasing
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Figure 19. Influence of NE on drop charge. �, k = 0.4; �, 0.5; �, 0.6; �, 0.7. Here, the
ratios of the charge on the primary drop and the satellite drop to the Rayleigh charge
limit (QR =

√
96πNEV ) obtained from two-dimensional simulations are shown for moderately

viscous jets of NOh = 0.1, (a, b), and viscous jets of NOh = 1.0, (c, d), for various wavenumbers
over a range of electric Bond numbers.

k at fixed NE . The variation of (Q/QR)sat with NE is somewhat more complex in the
viscous case, for reasons described above. For longer waves (e.g. k = 0.4), (Q/QR)sat

increases dramatically at low NE and levels off at higher NE . For shorter waves
(e.g. k = 0.7), (Q/QR)sat drops off rapidly with increasing NE at lower electric Bond
numbers and decreases more slowly at higher NE . Figure 20 shows the variation of
computed (Q/QR)main and (Q/QR)sat from two-dimensional simulations with NE for
slightly viscous jets of NOh = 0.01, moderately viscous jets of NOh = 0.1, and viscous
jets of NOh = 1 when k = 0.6. The charge ratio for primary drops exhibits a moderate
dependence on NOh; (Q/QR)main increases with NOh at fixed NE for the range of NE

examined. The charge ratio for satellite drops increases monotonically with NE for
both slightly viscous jets and moderately viscous jets. This trend is reversed in the
viscous case, as described above.

Charge ratios computed using the one-dimensional algorithm agree reasonably well
with their counterparts from two-dimensional simulations. Figure 21 compares the
electric Bond number dependence of the computed charge ratios for primary drops
and satellite drops obtained from one- and two-dimensional simulations for both
moderately viscous jets of NOh = 0.1 and viscous jets of NOh = 1 for perturbations of
wavenumber k = 0.6. For moderately viscous jets, the one-dimensional algorithm tends
to overestimate slightly (Q/QR)main and underestimate slightly (Q/QR)sat , with better
agreement between the two algorithms observed at lower NE and larger deviations
observed at higher NE . For viscous jets, while there is little discernible difference
between the two algorithms with respect to (Q/QR)main, the one-dimensional algorithm
tends to overestimate somewhat the charge ratio for satellite drops at low NE .
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Figure 20. Influence of NE on drop charge. Here, the ratios of the charge on (a) the primary
drop and (b) the satellite drop to the Rayleigh charge limit (QR =

√
96πNEV ) obtained from

two-dimensional simulations are shown for �, slightly viscous jets of NOh = 0.01; �, moderately
viscous jets of NOh = 0.1; and �, viscous jets of NOh =1.0 subjected to perturbations of
wavenumber k = 0.6 for a range of electric Bond numbers.
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Figure 21. Comparison of drop charge from �, one- and �, two-dimensional simulations.
Here, the ratios of the charge on the primary drop and the satellite drop to the Rayleigh
charge limit (QR =

√
96πNEV ) obtained from one- and two-dimensional simulations are shown

for both moderately viscous jets of NOh = 0.1, (a, b), and and viscous jets of NOh =1, (c, d),
subjected to perturbations of wavenumber k = 0.6.
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Figure 22. Influence of electrostatic stresses on satellite formation. Here, jet profiles, (a), are
shown along with the axial variation of the capillary pressure, (b), and axial velocity evaluated
along Sf , (c), for a sequence of instants during the evolution in time of an uncharged (NE =0)
slightly viscous jet of NOh = 0.01 subjected to a perturbation of wavenumber k = 0.6. The
axial location of hmin at each instant is indicated by the horizontal lines in (a) and by the
vertical lines in (b) and (c). Profiles are shown at instants corresponding to hmin =0.493 (——),
hmin = 0.461 (- - -) and hmin = 0.401 (− · −).

3.4.3. Electrostatic stresses and satellite drop formation

To understand why the application of electrostatic stresses results in the formation
of larger satellite drops, it is instructive first to consider the mechanism of satellite
drop formation in uncharged jets. In the absence of electrostatic stresses (NE =0), the
formation of satellite drops is driven by inertia (Eggers 1993; McGough & Basaran
2006). Initially, for small ε and k < 1, both the minimum radius hmin and the maximum
capillary pressure are located at z = π/k. The capillary pressure gradient along the
jet drives a flow of fluid from the neck, z = π/k, toward the swell, z = 0, depleting
fluid from the neck. As the neck thins, the capillary pressure gradient increases, and
the flow is accelerated. Because of symmetry, the axial velocity at z = π/k is zero,
and consequently the magnitude of the radially averaged axial velocity is a maximum
at some axial location z < π/k. When inertia is significant, fluid is depleted faster in
the vicinity of this point than in the vicinity of z = π/k. Eventually, this results in a
transition from hmin being located at z = π/k to hmin being located at an axial location
z = zmin < π/k. The point at which this transition occurs signals the inception of the
proto-satellite drop.

Figure 22 shows at several instants in the temporal evolution of an uncharged,
slightly viscous jet of NOh = 0.01, highlighting the early stages of satellite drop
development in a case for which a large satellite is observed to form at pinch-off (see
figure 10). Jet profiles for half a wavelength (figure 22a) are shown at each instant
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(a) NE = 0 (b) NE = 1 (c) NE = 3 (d) NE = 5

Figure 23. Influence of electrostatic stresses on jet profiles at the incipience of pinch-off for
jets in the Stokes flow limit. Here, k = 0.6. For the uncharged jet, (a), the primary drop is
prolate and the pinch-off is symmetric, i.e. no satellite drops are formed. For charged jets,
(b–d), pinch-off is asymmetric. The satellite drops observed at breakup become progressively
larger as NE increases and exhibit large, bulbous cores.

along with the axial variation of the capillary pressure pC (figure 22b) and axial
velocity v evaluated along Sf (figure 22c). The first profile corresponds to the instant
at which the proto-satellite is first observed, i.e. the point in time at which hmin shifts
to an axial location z = zmin < π/k. At this instant, pC increases monotonically from
z = 0 to z = π/k, and v is everywhere negative, as is the case prior to the inception of
the proto-satellite drop. As the jet thins in the vicinity of the new hmin, a maximum in
the pC that is located at some z = z∗ < π/k emerges in proximity to the new hmin owing
to the increased local curvature of the free surface there. The second profile shows
the first instant at which this maximum in the pC is observed. Beyond this point, the
direction of the capillary driving force in the proto-satellite drop is reversed, acting
to slow but not reverse the flow of fluid into the swell, as can be seen in the third
profile from a slightly later time. These profiles also show that, after the inception of
the proto-satellite drop, hmin translates axially away from the initial neck as the jet
deforms. This axial translation of hmin, like the inception of the proto-satellite drop, is
driven by inertia and continues up to the point of pinch-off. At a given instant, while
pC is maximum at a point near hmin, the capillary pressure gradient and the radially
averaged axial velocity are maximum at points downstream of hmin. When inertia is
significant, as is the case in this example, the net efflux of fluid just downstream of
hmin exceeds the net efflux of fluid in the immediate vicinity of hmin, resulting in what
appears to be a smooth axial translation of hmin away from the initial neck as the jet
evolves in time.

For uncharged jets in the Stokes flow regime, for which inertia is completely absent,
both hmin and the maximum pC remain at z = π/k up to the point of pinch-off, and
no satellite is formed (Papageorgiou 1995). However, this is not the case for charged
Stokes jets, as figure 23 demonstrates. Here, jet profiles at the incipience of pinch-off
from two-dimensional simulations are shown for (a) an uncharged jet (NE = 0) and
for charged jets with (b) NE = 1, (c) NE = 3 and (d) NE = 5 in the Stokes flow limit.
While no satellite drop is formed in the uncharged case, satellite drops are formed for
charged Stokes jets, and the sizes of the satellite drops formed increase with NE . The
development of these satellites is driven not by inertia, but rather by a reversal of the
direction of the gradient of the electrocapillary pressure pC + pE in the vicinity of
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z = π/k that occurs during the temporal evolution of a jet. Initially, for small ε and
k′

crit < k < kcrit , the electrocapillary pressure gradient along the jet drives a flow of fluid
from the neck to the swell, causing the neck to thin. As the neck thins, the capillary
pressure in the vicinity of z = π/k increases owing to the increasing local curvature
of the free surface, and the normal component of the Maxwell stress along the free
surface, i.e. −pE , in the vicinity of z = π/k increases because of charge accumulation.
These effects are observed immediately for k′

crit < k < kE , in accord with linear theory,
but are observed only after the neck has thinned significantly for kE < k <kcrit . The
peak in pC about z = π/k tends to be somewhat broader than the peak in pE ,
as, to the leading order, pC in that region varies roughly as 1/r while pE varies
roughly as NE/r2. The magnitudes of these peaks increase as the jet evolves in time,
leading eventually to the emergence of a maximum in the electrocapillary pressure
that is located at z = z∗ < π/k and consequently to the reversal of the electrocapillary
pressure gradient within the jet. The reversal of the electrocapillary driving force in
the portion of the neck between z∗ � z � π/k acts to reduce the efflux of fluid from the
region, and consequently, at a slightly later time, a new hmin emerges at z = zmin < π/k,
marking the inception of the proto-satellite drop. Shortly after the inception of the
proto-satellite drop, a stagnation plane emerges upstream of the new hmin, above
which the direction of flow is reversed. After this instant, the proto-satellite grows
from an infusion of fluid from the proto-primary drop.

Figure 24 outlines the early stages of satellite drop development for a highly
charged (NE = 5) Stokes jet, showing a sequence of instants in the temporal evolution
of the jet. Here, jet profiles for half a wavelength (figure 24a) are shown along with
the axial variation of the electrocapillary pressure (figure 24b) and the axial velocity
evaluated along Sf (figure 24c). For the first profile, pC + pE increases monotonically
from z = 0 to z = π/k, v is negative (i.e the flow is directed toward z = 0 all along the
half-wavelength), and hmin is located at z = π/k. At the next time step (not shown), a
maximum in pC +pE emerges at z = z∗ < π/k, though hmin remains located at z = π/k.
The second profile shows the instant at which a new hmin emerges at z = zmin < π/k,
marking the inception of the proto-satellite. Here, the reversal of the electrocapillary
pressure gradient near z = π/k is already pronounced, and the magnitude of the axial
velocity near z = π/k has decreased slightly. The third profile corresponds to the
first instant in time at which there is a reversal in the flow field in the vicinity of
z = π/k. The magnitude of the axial velocity has decreased considerably upstream
of z∗ relative to the previous profile. For the fourth profile shown, the stagnation
plane just upstream of hmin and above which the direction of flow is reversed is
clearly visible, and the satellite has begun to thicken around z = π/k, giving the first
indications of the large bulbous satellite that will eventually separate from the primary
drop (see figure 23d).

Figure 25 compares the evolution in time of the profile of and the flow field within
an uncharged Stokes jet with that of a highly charged (NE = 5) Stokes jet. The dashed
horizontal lines indicate the axial location of hmin above z = 0, while the dot-dashed
horizontal lines indicate the location of the interior stagnation plane above which
the flow direction is reversed (i.e. flow is directed into the proto-satellite) in the
region above z =0. In the uncharged case, as mentioned above, the flow is directed
continuously into the proto-primary drop (no satellite is formed in this case, making
this designation somewhat arbitrary) throughout the temporal evolution of the jet,
and hmin remains at its initial location (z = π/k) up to the point of pinch-off (see
figure 23a). In the highly charged case, however, a proto-satellite drop has clearly
developed prior to the point at which hmin = 0.4, along with a stagnation plane above
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Figure 24. Influence of electrostatic stresses on satellite formation. Here, jet profiles, (a), are
shown along with the axial variation of the electrocapillary pressure, (b), and axial velocity
evaluated along Sf , (c), for a sequence of instants during the evolution in time of a highly
charged (NE = 5) jet in the Stokes flow limit subjected to a perturbation of wavenumber
k =0.6. The axial location of hmin at each instant is indicated by the horizontal lines in (a) and
by the vertical lines in (b) and (c). Profiles are shown at instants corresponding to hmin = 0.672
(——), hmin =0.568 (- - -), hmin = 0.495 (− · −) and hmin =0.408 (– –).

which the direction of the flow is reversed. By the point at which hmin = 0.2, the
proto-satellite drop has grown significantly at the expense of the proto-primary drop
and has begun to take on the bulbous shape the satellite drop will have at pinch-off
(see figure 23d).

For the case of charged Newtonian jets of low or moderate NOh, both of the
mechanisms for satellite drop formation discussed above come into play, with the
inertial mechanism being the more important of the two for slightly charged jets and
the electrocapillary mechanism being more important for highly charged jets. Because
the two mechanisms are complementary, however, it is not surprising that, for fixed
NOh and k, satellite drop volumes are larger for charged jets than for uncharged jets.
Figure 26 highlights the differences between the early stages of satellite formation
for an uncharged (NE = 0) moderately viscous jet of NOh = 0.1 and a highly charged
(NE = 5) jet of the same NOh. The transition from hmin being located at z = π/k

to hmin being located at z = zmin < π/k occurs much earlier for the highly charged
jet (hmin =0.826) than for the uncharged jet (hmin = 0.408). This is due to an early
reversal of the sign of the electrocapillary pressure gradient in the neck in the highly
charged case, as was the case with the highly charged Stokes jet described above.
Shortly after the transition from hmin being located at z = π/k to hmin being located
at z = zmin < π/k (hmin = 0.734), an interior stagnation plane, indicated by the dot-
dashed horizontal line, emerges in the highly charged jet upstream of hmin. Above the
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Figure 25. Influence of electrostatic stresses on satellite formation. Jet profiles and streamlines
are shown for both (a) uncharged (NE = 0) and (b) charged (NE = 5) jets in the Stokes flow
limit. The uncharged and charged jet profiles are compared at equivalent hmin. The location
of the interior stagnation plane (upper half) is included for reference (− · −) when applicable,
along with the location of hmin (− − −). Here, k = 0.6.

stagnation plane, fluid flows toward z = π/k, whereas below the stagnation plane fluid
flows toward z = 0. This stagnation plane moves steadily away from z = π/k as the jet
evolves toward breakup, trailing hmin, so that fluid is continually pumped away from
the portion of the jet that will form the primary drop into the satellite. This results
in the development of a much larger satellite in the highly charged case than in the
uncharged case, for which no such stagnation plane develops until much later in the
evolution of the jet (hmin ≈ 0.029, not shown).

3.4.4. Electrostatic stresses and primary drop formation

While primary drops formed at pinch-off from charged jets are smaller than
their counterparts formed from uncharged jets, figures 9 to 12 show that primary
drops formed from charged jets are also more oblate or radially elongated than
are those formed from uncharged jets. This effect is more pronounced at higher
NE and is observed for the entire range of wavenumbers and Ohnesorge numbers
examined in this work. This effect is not too surprising in light of the nature of
the electrocapillary driving force along the surface of the swell in the early stages
of the temporal evolution of a charged jet. Driven by the electrocapillary pressure
gradient along the free surface of a charged jet, fluid flows from the neck into the
swell, causing the jet to expand radially in the vicinity of z = 0. This process leads
eventually to the formation of a large primary drop centred at z = 0, as is the case
with uncharged jets. For charged jets, however, as the swell expands, charge begins
to accumulate preferentially along the portion of the free surface in the vicinity of
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hmin = 0.8 hmin = 0.6 hmin = 0.4 hmin = 0.2(a)

(b)

Figure 26. Same as figure 25 except for moderately viscous jets of NOh =0.1.

z = 0 (i.e. where the drop is most elongated), just as charge accumulates preferentially
at the peaks of planar waves. The accumulation of charge around z = 0 increases
the magnitude of the local electrocapillary pressure gradient, which acts to enhance
the rate of flow of fluid into the region. This results in enhanced radial elongation
of the jet near z = 0 with an attendant increase in the local surface charge density.
Figure 27 highlights the differences in the early development of primary drops between
uncharged and charged jets described above. Jet profiles (top) obtained from two-
dimensional simulations, along with the axial variation of the surface charge density
q (middle) and electrocapillary pressure (bottom) are shown for an uncharged jet
(figure 27a) and a highly charged jet (NE = 5) (figure 27b) at several instants in
time during their temporal evolution. Here, the wavenumber is chosen such that
k = 0.6 ≈ kE to demonstrate that the phenomenon described above is nonlinear in
nature. There is little discernible difference between the uncharged jet profile and the
charged jet profile when hmin =0.9, and q in the charged case is nearly uniform at
that instant, as is expected from linear theory. As the charged jet continues to deform,
charge begins to accumulate preferentially in the vicinity of z = 0, as described above.
This alters the local electrocapillary pressure gradient in such a way as to increase
the flow of fluid into that region, resulting in increased radial elongation. When
hmin = 0.85, a noticeable peak has developed in the surface charge density centred
about z = 0 in the charged case, and the jet profile in the charged case is slightly more
radially elongated in the vicinity of z =0 than is the case with the corresponding
uncharged jet profile. These effects become quite pronounced as the charged jet
continues to deform, so that the jet is visibly more radially elongated in the vicinity
of z = 0 in the charged case than is the case for the the uncharged jet when hmin =0.8.
Here, the axial variation of the electrocapillary pressure is clearly larger near z =0
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Figure 27. Influence of electrostatic stresses on the early development of primary drops.
Here, jet profiles (top) from two-dimensional simulations, along with surface charge density q
(middle) and electrocapillary pressure pC + pE (bottom) variations along Sf , are shown for,
(a), an uncharged (NE = 0) jet and, (b), a highly charged (NE = 5) jet at instants corresponding
to hmin = 0.9 (——), hmin =0.85 (- - -), and hmin = 0.8 (− · −). For both (a) and (b), the jets
are moderately viscous (NOh = 0.1) and k = 0.6 ≈ kE . Note that the jet profiles shown are
not to scale in order to facilitate comparison of the uncharged and highly charged cases.
For further ease of comparison, the electrocapillary pressure of the unperturbed filament (i.e.
N−1

Oh(1−NE/ log2(R))) has been subtracted from the computed electrocapillary pressure in each
case.

in the charged case, indicating that the jet will continue to elongate radially in that
region to a greater extent than in the uncharged case. Ultimately, this process results
in the formation of primary drops which are considerably more oblate than those
formed from uncharged jets.

The formation of oblate primary drops from charged jets, as mentioned previously,
has been observed both when k > kE and when k < kE . With regard to linear theory,
this may seem counterintuitive, since while for an infinitesimal amplitude perturbation
with k > kE the surface charge density is maximum at z = 0, for k < kE the surface
charge density is actually minimum at z =0. However, as alluded to previously, the
formation of more oblate primary drops from charged jets is an entirely nonlinear
effect. Figure 28 shows an example of the early stages of the temporal evolution
of two highly charged (NE = 5), moderately viscous jets of NOh = 0.1 subjected to
perturbations of wavenumbers k = 0.7 and 0.4. Jet profiles (top) are shown along
with the axial variation of the surface charge density (middle) and electrocapillary
pressure (bottom) along the free surface at several instants in time during the early
stages of their temporal evolution. In the earliest stages of jet deformation, the
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Figure 28. Influence of electrostatic stresses on the early development of primary drops. Here,
jet profiles (top) for highly charged (NE = 5), moderately viscous (NOh = 0.1) jets subjected to
perturbations of wavenumbers (a) k = 0.7 and (b) k = 0.4 are shown at instants corresponding
to hmin = 0.95 (——), hmin = 0.925 (- - -), and hmin = 0.9 (− · −). Note that here the jet profiles
are not shown to scale. The surface charge density q (middle) and electrocapillary pressure
pC + pE (bottom) along Sf are also shown.

surface charge density varies along the free surface in a manner consistent with
linear theory in both cases. For the relatively short wave (k = 0.7 >kE), the magnitude
of the surface charge density decreases monotonically along Sf when hmin = 0.95,
with its maximum (minimum) located at z = 0 (z = π/k), while for the longer wave
(k = 0.4 <kE), the surface charge density increases monotonically along Sf , with its
minimum (maximum) at z = 0 (z = π/k). As the jets continue to deform, the maximum
magnitude of the surface charge density remains located at z = 0 for the shorter wave,
though the sharpness of the peak around z = 0 increases as the jet elongates radially
in that region. For the longer wave, the local variation of q around z = 0 begins to
flatten out as the jet deforms, as is apparent from the profile shown when hmin = 0.925.
Here, while electrocapillary stresses have slowed the flow of fluid from the neck into
the swell, the overall electrocapillary driving force has still caused the swell to expand
radially, acting to increase the local surface charge density around z = 0. As the portion
of the jet around z = 0 continues to expand under the action of the electrocapillary
pressure gradient, a peak in the surface charge density eventually develops centred
about z =0. This peak is clearly visible when hmin = 0.9. Once this peak has developed,
the local electrocapillary pressure gradient acts to accelerate the radial elongation of
this region in the manner described above. In both cases, then, as the swell expands,
the surface charge density around z = 0 evolves in such a way as to promote radial
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elongation of the jet in that region, leading ultimately to the formation of oblate
primary drops.

In their study of inviscid, highly charged jets, Setiawan & Heister (1997) report that
primary drops formed from charged jets are more ‘squashed’ or oblate than those
formed from uncharged jets, as has been demonstrated in this work for Newtonian
fluids of arbitrary viscosity. At very high charge levels (NE/ log2(R) > 1 − 2), however,
these authors propose a different mechanism of breakup, postulating that a ‘tiny ring
of fluid at the tip of the peak’ is sheared off from the peak of the swell as it elongates
radially into the electric field. Their claim is based on the behaviour of the free-surface
nodes in their boundary-element simulations at, and immediately adjacent to, the
radial peak of the swell (i.e. at z = 0 in the coordinate frame used in the present work).
According to these authors, as the swell elongates radially, expanding rapidly under
the action of the strong electrocapillary pressure gradient there, a point is reached
beyond which, while the node at the radial peak of the swell has a large positive
radial velocity, the two neighbouring nodes have large negative radial velocities.
Results are shown for jets subjected to very short wave perturbations (k = 1.3), and
the phenomena described is observed for NE = 7.5 and larger with R =10. Although
the phenomena described by Setiawan & Heister (unphysical behaviour of adjacent
nodes) is most probably an artefact of insufficient mesh refinement, the nature of the
electrostatic stresses acting at the periphery of a proto-primary drop at high levels of
electrification do lend some credence to the idea that the mechanism of breakup may
be altered at very high charge levels. This idea is explored in the following subsection.

3.4.5. Drop formation at very high NE

In this subsection, the breakup of electrified jets at very high electric Bond numbers
is examined using the two-dimensional algorithm. To resolve the temporal evolution
of the primary drop in fine detail, the mesh designated Mesh II, as described in
Appendix B.1, is used. Slightly viscous (NOh) jets subjected to very short wavelength
perturbations (k = 1.3) are examined to allow for comparison with the inviscid analysis
of Setiawan & Heister. The one-dimensional algorithm is not suitable for this analysis,
as for even moderately high NE the one-dimensional algorithm fails prior to pinch-off
for slightly viscous jets.

Figure 29 shows a sequence of instants in time in the temporal evolution of slightly
viscous jets at three high values of NE . Profiles corresponding to hmin = 0.5 (relatively
early in the temporal evolution of a jet toward pinch-off) show the higher NE is, the
more oblate are the proto-primary drops. Further, the proto-primary drop at NE = 7.5
has a more spiked appearance than the proto-primary drops at the lower NE . Radial
elongation of the proto-primary drops continues as breakup is approached, as can
be seen from the profiles corresponding to hmin = 0.1. For NE = 5.5, the roughly
oblate spheroidal proto-primary drop shape characteristic of jet breakup at low to
moderately high NE is observed at this point, but for NE = 7.5, the shape of the
proto-primary drop resembles a flattened disk bulging in the centre. Moreover, a
substantial ring-like structure appears to be forming at the periphery of the disk (see
below). The primary drops formed at pinch-off (hmin = 0.002), while exhibiting the
interface overturning characteristic of pinch-off for slightly viscous jets, differ little at
the periphery from the profiles corresponding to hmin = 0.1, as the dynamics at the
pinch-point occur on a much faster time scale than the dynamics at the periphery.
However, it is clear that the dynamics at the periphery are accelerated at very high
NE .
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NE = 6.5

NE = 7.5

hmin = 0.002

NE = 5.5

hmin = 0.5 hmin = 0.1

Figure 29. Temporal evolution of jet profiles at very high NE . A series of jet profiles are
shown for slightly viscous jets of NOh = 0.01 subjected to very short wavelength perturbations
(k = 1.3) at very high NE . Jet profiles are compared at instants in time when hmin = 0.5,
hmin = 0.1 and at pinch-off (hmin = 0.002) for jets with NE = 5.5, NE = 6.5 and NE = 7.5.

Figure 30 shows in detail the peripheral region of the primary drop formed at
pinch-off for NE = 7.5. The streamlines shown indicate that the flow is nearly radial
in this region. Further, radial velocity contours indicate that the radial velocity is
maximum at a point upstream of the extreme periphery of the primary drop. In the
vicinity of the location of the maximum radial velocity, the thickness of the disk-like
structure of the primary drop exhibits a local minimum (i.e. the free surface in this
region cannot be described by a single-valued function of the axial coordinate). Prior
to pinch-off, there is a net efflux of fluid from the vicinity of this minimum into the
extreme periphery of the primary drop, resulting in the formation of this ring-like
structure. These structures are not observed for NE < 7 for the parameters examined
here. Although it is not possible with the present algorithm to continue simulations
past the point of pinch-off, the trends observed prior to pinch-off indicate that this
ring-like structure will continue to grow after breakup and may eventually detach
from the bulk of the primary drop.

Figure 31 shows how the charge ratios (Q/QR)main and (Q/QR)sat for the primary
and satellite drops formed at pinch-off vary with NE for slightly viscous jets of
NOh = 0.01 subjected to very short wavelength perturbations (k = 1.3) at moderately
high to very high electric Bond numbers. (Q/QR)sat , which increases with increasing
NE in the low to moderately high NE range, exhibits a maximum and drops off at
very high NE; this drop off is most probably due to increased effective shielding
of satellite drops from the electric field owing to the proximity of the far more
radially elongated primary drops that form at these NE . For low to moderately high
electric Bond numbers, (Q/QR)main increases monotonically with NE , as described
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Figure 30. Electrohydrodynamics at the periphery of a primary drop at pinch-off at very high
electric Bond numbers. Here, the peripheral portion of the primary drop formed at pinch-off
from a slightly viscous jet of NOh = 0.01 subjected to a very short wavelength perturbation
(k = 1.3) is shown in detail for NE =7.5. The full jet profile is indicated as an insert, and the
box shows the extent of the region shown in the main figure. Also shown in the main figure
are the radial velocity contours (upper portion) and streamlines (lower portion).
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Figure 31. Drop charges at very high electric Bond numbers. Here, the ratio of the drop
charge Q to the Rayleigh charge limit (QR =

√
96πNEV ) for primary (——) and satellite (- - -)

drops formed at pinch-off ((Q/QR)main and (Q/QR)sat , respectively) are shown for moderately
high to very high NE . Results are shown for slightly viscous jets of NOh = 0.01 subjected to very
short wavelength perturbations (k = 1.3). Also shown as inserts are jet profiles for NE = 5.5
and NE = 7.5.

in § 3.4.2, though in that range, the primary drops are Coulombically stable (i.e.
(Q/QR)main < 1 in this range). (Q/QR)main continues to increase with NE at very high
NE , and for the parameter set examined here, the primary drops formed at pinch-off
become Coulombically unstable when NE exceeds 6.5. This transition corresponds
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closely with the morphological transition described above: for NE < 6.5, primary
drops have a roughly oblate spheroidal shape, whereas for NE > 6.5, primary drops
exhibit a flattened disk-like structure with a central bulge. The structures observed at
very high NE in this work, however, are most probably unphysical, as these shapes
may be unstable with respect to non-axisymmetric perturbations. To our knowledge,
no experimental evidence has been reported for the development of the ring-like
structures observed in figure 29. Cloupeau & Prunet-Foch (1989) indicate rather that
for very highly charged jets, the drops formed at pinch-off emit fine jets from their
peripheries when their surface charges exceed the Rayleigh limit. Alternately, these
authors report that either kink instabilities or the emission of multiple fine jets from
the periphery of the original jet can occur in lieu of axisymmetric pinch-off. These
types of instabilities cannot, of course, be observed with the algorithms used in this
work owing to the assumptions of axisymmetry employed here.

It should be noted that Setiawan & Heister (1997) report that the boundary-element
code used in their inviscid analysis fails well before pinch-off (hmin ≈ 0.65) for the
same set parameter of (k = 1.3, NE = 7.5, R = 10) shown in figure 29.

3.5. Electrostatic stresses and interface overturning

In the absence of electrostatic stresses, interface overturning has been observed
computationally in studies of capillary pinch-off in the inviscid limit by numerous
authors (Mansour & Lundgren 1990; Chen & Steen 1997; Day et al. 1998). Day
et al. have shown through boundary-element simulations that, for an inviscid liquid
drop breaking in air, the local interface near the pinch point evolves in a self-similar
manner, adopting angles of 18.1◦ and 112.8◦ measured from the axis through the
liquid for the satellite and primary drops, respectively. This result is independent
of the ICs. As the latter angle is greater than 90◦, the interface is deemed to be
overturned (i.e. the interface cannot be described by a single-valued function of the
axial coordinate). Wilkes et al. (1999) first demonstrated that interface overturning
can occur with Newtonian fluids at low NOh in their computational study of drop
formation from a tube. Chen et al. (2002), using a G/FEM algorithm, also report
interface overturning with Newtonian fluids at low NOh and compare their results
to experiments, demonstrating excellent agreement. Overturning of the interface of a
primary drop is thought to be due to inefficient transport of axial momentum. As
pinch-off is approached, a high-velocity stream concentrated around the axis of the
jet is pumped into the primary drop from the rapidly thinning neck owing to the high
capillary pressure there. For slightly viscous fluids, the axial momentum associated
with this stream cannot be efficiently transmitted into the bulk of the primary drop
through the action of viscous shear stresses, and so remains concentrated around the
axis. The inertia of this stream, then, acts essentially to drag the local interface into
the primary drop, resulting in interface overturning.

The influence of electrostatic stresses on interface overturning with charged jets
has not been examined to date. The slender-jet algorithm used by López-Herrera
et al. (1999) and López-Herrera & Gañan-Cálvo (2004) and also the one-dimensional
algorithm used here artificially prohibit interface overturning by requiring that the
interface be a single-valued function of z. Setiawan & Heister (1997), in their inviscid
analysis, did not resolve the pinch region in sufficient detail to observe substantial
interface overturning.

Two-dimensional simulations show that interface overturning occurs for both
uncharged and charged jets at low to moderate values of NOh, as can be seen
from the computed jet profiles at pinch-off shown in figures 9–11 and 17. Interface
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Figure 32. Influence of NE on interface overturning for jets subjected to perturbations
of wavenumber k = 0.6. (a) The critical Ohnesorge number NOh,crit below which interface
overturning occurs as a function of NE . Also shown as inserts are jet profiles near pinch-off.
(b) Interface profiles for moderately viscous filaments of NOh = 0.1 near pinch-off (hmin = 0.002)
at various NE . While the interface does not overturn with no applied electric field, NE = 0,
overturning of the interface is pronounced for the highly charged case, NE = 5.

overturning is observed for cases in which the Ohnesorge number is less than a critical
value, NOh,crit , which depends on NE and to a lesser extent on k. The variation of
NOh,crit with NE for k = 0.6 is shown in figure 32(a), along with computed jet profiles
at selected values of NOh,crit . By computing curves like that shown in figure 32(a) at
other wavenumbers, it is possible to construct a phase diagram for the occurrence of
interface overturning with charged jets in (NE, k, NOh) space. Figure 32(a) indicates
that electrostatic stresses act to promote interface overturning, as NOh,crit increases
monotonically with NE . Similar trends have been observed for all wavenumbers
examined in this work.

Figure 32(b) shows portions of computed jet profiles from two-dimensional
simulations at the incipience of pinch-off for moderately viscous jets of NOh = 0.1
for several values of NE . For ease of comparison, the profiles are shifted so that
the minimum radius hmin has the same axial location z − zmin for each profile. The
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influence of electrostatic stresses on interface overturning is clearly demonstrated here.
In the uncharged case for this combination of k and NOh, interface overturning is
not observed (NOh,crit ≈ 0.089 for uncharged jets at this wavenumber). For charged
jets, although interface overturning is not observed at low NE , the interface of the
primary drop near the pinch region steepens as NE is increased. The interface of the
primary drop near the pinch region in the computed jet profile shown for NE = 1,
although not overturned, is nearly horizontal. Interface overturning is first observed
for charged jets at this combination of k and NOh when NE ≈ 1.13 (not shown),
the point corresponding to NOh,crit = 0.1 in figure 32(a). At higher NE , interface
overturning becomes visibly more pronounced, as can be seen from the computed jet
profile shown for NE = 5.

3.6. Electrostatic stresses and the local dynamics of pinch-off

In this section, the influence of an applied electric field on the local dynamics of pinch-
off is examined. While other system parameters, and particularly the electric Bond
number, play a role here, the extent to which an applied electric field influences pinch-
off dynamics depends to a large degree on the Ohnesorge number. To demonstrate
this, it is worth first examining how the surface charge density in the pinch region
evolves as breakup is approached. Figure 33 shows computed jet profiles at times
approaching pinch-off for a range of moderately viscous charged jets. The axial
variation of the surface charge density q is shown, along with the shape profiles
in each case. The results shown are from two-dimensional simulations using Mesh
I with Nz1 = 500 (see Appendix B.1). For each profile shown, the axial location of
the minimum radius along the free surface hmin (i.e. the pinch point) is indicated
by the horizontal lines. For each NOh, jet profiles are shown at sequential instants
in time approaching pinch-off, corresponding to hmin = 0.004 and hmin = 0.002. At
low NOh, the pinch region is almost totally shielded from the applied electric field
by the overturned interface of the primary drop, and the surface charge density q

there falls nearly to zero. The profiles shown in figures 33(a) and 33(b) demonstrate
this effect for NOh = 0.1. Thus, when NOh = 0.1, q in the vicinity of hmin increases
little from the instant at which hmin = 0.004 to that at which hmin = 0.002. As NOh

is increased, the extent of interface overturning diminishes, and the pinch region is
more exposed to the applied electric field. For NOh = 0.178, which is very close to
NOh,crit for this combination of NE and k (see § 3.5), while q is still relatively small
in the vicinity of the pinch point, figures 33(c) and 33(d) show a noticeable increase
in q from the instant at which hmin =0.004 to that at which hmin = 0.002. Here, the
development of a peak in q upstream of hmin that increases steadily in magnitude
as pinch-off is approached, corresponding to the thinning of the thread-like filament
connecting the primary and satellite drops, is observed. The magnitude of this peak
drops off sharply near the primary drop as a consequence of increased shielding of
the filament from the electric field provided by the proximity of the primary drop.
The length of this thread-like filament increases substantially with NOh, and the size
of this peak increases accordingly, as can be seen from the profiles for NOh =0.316
(figures 33e, f ). The increase in the local surface charge density in the pinch region
at fixed hmin with NOh is largely due to the location of the pinch point. For both
uncharged and charged jets, the distance between the pinch point and the leading
edge of the primary drop increases with NOh, and consequently the effectiveness of
the shielding of the pinch region from the electric field provided by the proximity of
the primary drop diminishes as NOh is increased.
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Figure 33. Surface charge density at the incipience of pinch-off. Here, computed jet profiles
(—–) and surface charge densities q (- · -) obtained from two-dimensional simulations are
shown for highly charged (NE = 5), moderately viscous jets (0.1 � NOh � 0.316) subjected to
perturbations of wavenumber k =0.6. The horizontal lines indicate the axial location of the
minimum radius hmin.

Figure 33 suggests that the applied electric field should not influence the dynamics
of pinch-off in any significant way at low Ohnesorge numbers, as the pinch region
is almost totally shielded from the field by the overturned interface of the primary
drop. However, because the surface charge density in the pinch region increases
dramatically as pinch-off is approached at higher NOh, the applied electric field may
have a drastic effect on pinch-off dynamics. Recall that the electrostatic pressure
is related to the surface charge density by pE = − (1/4)N−1

OhN
−1
E q2. For the electric

field to have a significant influence on pinch-off dynamics, the magnitude of the
electrostatic pressure must be comparable to the capillary pressure. Figure 34 shows
how the absolute value of the ratio of the electrostatic pressure to the capillary
pressure −pE/pC evaluated at hmin varies with hmin as pinch-off is approached for
highly charged (NE = 5) jets at various NOh and also in the Stokes flow limit. The
results shown are from two-dimensional simulations using Mesh I, with Nz1 = 500.
For moderately viscous jets (NOh = 0.1), −pE/pC drops off rapidly as pinch-off is
approached. For example, at hmin =0.002, pC is more than four orders of magnitude
larger than −pE . Qualitatively similar behaviour is exhibited by jets at lower NOh (not
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Figure 34. Balance of electrostatic and capillary stresses as pinch-off is approached. Here, the
ratio of electrostatic stress to the capillary stress evaluated at hmin as pinch-off is approached
is shown for a range of NOh and also for the Stokes flow limit. Results shown are for
highly charged jets (NE = 5) that have been obtained from two-dimensional simulations. Here,
k =0.6. While electrostatic stresses are dwarfed by capillary stresses at low to moderate NOh,
electrostatic stresses and capillary stresses are comparable at higher NOh and in the Stokes
flow limit, suggesting that the local pinch-off dynamics are relatively unaffected by electrostatic
stresses at low NOh but are significantly influenced by electrostatic stresses at high NOh.

shown), for which −pE/pC drops off even more rapidly as pinch-off is approached.
These results strongly suggest that an applied electric field does not influence the
local pinch-off dynamics at low Ohnesorge numbers, even at high NE . The situation
is different in the Stokes flow limit. Here, −pE/pC increases steadily as pinch-off
is approached. For example, at hmin = 0.002, −pE is nearly as large as pC . Similar
trends are observed with Newtonian jets at large Ohnesorge numbers, as may be
seen from the curve corresponding to NOh = 1. From these results, it is clear that at
large NOh, electrostatic stresses will have a significant impact on the local pinch-off
dynamics of charged jets. Whether or not an applied electric field will significantly
impact pinch-off at intermediate Ohnesorge numbers (0.1 < NOh < 1) is more difficult
to determine, as it depends in large degree on the electric Bond number. In this range,
−pE/pC depends very strongly on NOh, as the curves shown for NOh =0.316 and
NOh = 0.562 demonstrate. It should be noted that López-Herrera & Gañan-Cálvo
(2004), in their analysis of electrified jet breakup with a slender-jet algorithm, make a
similar claim for pinch-off dynamics of charged jets being relatively unaffected by an
applied electric field at low to moderate NOh, though the results shown in that work
are for considerably lower NE .

A series of two-dimensional simulations and corresponding one-dimensional
simulations comparing the relative importance of electrostatic and capillary stresses
in the pinch region as hmin → 0 have been conducted to determine how accurately the
one-dimensional algorithm predicts the influence of electrostatic stresses on pinch-off
dynamics. Figure 35 compares results from the two algorithms for highly charged
(NE = 5) jets at NOh =0.1 and NOh = 1. As with figure 34, figure 35 shows the variation
of the ratio −pE/pC evaluated at hmin with hmin as pinch-off is approached. Figure 35
shows that, for both moderately viscous and viscous jets, the one-dimensional
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Figure 35. Comparison of the ratio of electrostatic stress to the capillary stress evaluated
at hmin as pinch-off is approached computed from two-dimensional simulations with that
computed from one-dimensional simulations. The results shown are for highly charged
(NE = 5) jets of NOh = 0.1 and NOh = 1. Here, k = 0.6. Note that the one-dimensional algorithm
consistently overestimates the magnitude of the electrostatic stress relative to the capillary stress
in the pinch region in both cases.

algorithm significantly overestimates the relative importance of electrostatic stresses
on the pinch region as hmin → 0 relative to the predictions of the two-dimensional
algorithm. At hmin = 0.002, the stress ratio predicted by the one-dimensional algorithm
for NOh = 0.1 is nearly two orders of magnitude larger than that predicted by the
two-dimensional algorithm. Here, and at lower NOh, this deviation can be attributed
in large part to the failure of the one-dimensional algorithm to predict interface
overturning. The near total shielding of the pinch region from the applied electric
field provided by the overturned interface of the primary drop at low NOh, observed
in two-dimensional simulations, is not predicted by the one-dimensional algorithm,
and accordingly the one-dimensional algorithm over-predicts the magnitude of the
electrostatic stresses acting on the pinch region in this range of NOh. Results shown for
NOh = 1 indicate that even at higher NOh, for which the two-dimensional algorithm
predicts that the magnitude of the electrostatic stress acting at the pinch point
is comparable to the capillary stress, the one-dimensional algorithm consistently
overestimates −pE/pC . Again, this effect has to do with the accuracy with which the
one-dimensional algorithm predicts the shape of primary drops near pinch-off. As can
be seen in figure 12, the jet profile near pinch-off from a one-dimensional simulation
for this set of parameters tapers more gradually toward the pinch region relative to
the corresponding two-dimensional profile. This is a universal trend observed when
comparing results from the two algorithms, even for uncharged jets. Because the
profile of the leading edge of the primary drop increases more sharply away from
the pinch region in the two-dimensional case, the shielding of the pinch region from
the electric field provided by the proximity of the primary drop is more effective than
what is observed in the one-dimensional case.

A number of authors have carried out local analyses of the equations of motion
(Navier–Stokes, Stokes and Laplace) and have developed scaling laws to describe
the local dynamics of pinch-off (Eggers 1993; Papageorgiou 1995; Keller & Miksis
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1983; Day et al. 1998; Lister & Stone 1998), though no such scaling theories exist
when electrostatic stresses are important. For uncharged jets in the inviscid limit, the
dynamics of pinch-off are described by potential-flow (PF) scaling theory (Keller &
Miksis 1983; Chen & Steen 1997; Day et al. 1998), which dictates that the radial
and axial length scales in the pinch region vary as τ 2/3 as hmin → 0, where τ is the
time remaining until breakup, τ = tb − t , and tb is the breakup time. For uncharged
Newtonian jets at low NOh, the pinch-off dynamics follow the PF scaling law until
hmin becomes O(N2

Oh) (Lister & Stone 1998), at which point, viscous effects begin to
become important. Beyond this point, the pinch-off dynamics are described by the
inertial-viscous (IV) scaling theory (Eggers 1993), for which the local radial and axial
length scales vary as τ and τ 1/2, respectively. Notz et al. (2001), Chen et al. (2002)
and Notz & Basaran (2004) have demonstrated this transition computationally using
algorithms similar the two-dimensional algorithm used here.

If, as postulated above, however, an applied electric field does not influence pinch-
off dynamics at low to moderate NOh, the local dynamics of the pinch region
for charged, slightly viscous jets should follow the same scaling laws dictated for
uncharged slightly viscous jets. For slightly viscous jets with NOh = 0.01, for example,
the pinch-off dynamics should be governed by PF scaling theory until hmin ∼ 10−4,
beyond which the pinch-off dynamics should follow the IV scaling law. Figure 36
shows that the thinning dynamics of both uncharged and highly charged (NE = 5),
slightly viscous (NOh = 0.01) jets match PF scaling theory, demonstrating that the
application of even a strong electric field has no discernible influence on pinch-off
dynamics of jets at low NOh. The results shown are from two-dimensional simulations
using Mesh I with Nz1 = 500. Figure 36(a) shows the variation of hmin with τ both
for uncharged (NE = 0) and highly charged (NE = 5), slightly viscous (NOh = 0.01)
jets. In both cases, it has been found that hmin varies as τ 2/3, demonstrating that the
radial length scale follows the power-law scaling predicted by the PF scaling law.
Further, there is virtually no discernible difference between the hmin vs. τ curves for
the uncharged jet and the highly charged jet.

For uncharged jets, because of the orders of magnitude disparity between the local
length and time scales in the proximity of pinch-off and the corresponding global
scales, the interface shapes in the vicinity of the pinch point must be self-similar and
hence, when properly scaled, should collapse onto a single profile. As both the local
axial and radial length scales vary as τ 2/3 in the PF regime, scaling h and z − zmin

by hmin produces the desired collapse. Figure 36(b) shows a sequence of profiles with
h and z scaled by hmin for both uncharged and highly charged (NE = 5), moderately
viscous jets in the vicinity of the pinch point at τ corresponding to hmin = 0.016,
hmin = 0.008 and hmin = 0.004. Both the uncharged and highly charged profiles, when
scaled according to PF scaling theory, demonstrate self-similarity. Further, the scaled
uncharged and highly charged profiles become nearly indistinguishable as pinch-off
is approached. These results strongly support the assertion that the applied electric
field has no discernible influence on the local pinch-off dynamics at low NOh.

4. Conclusions
A robust and accurate three-dimensional but axisymmetric G/FEM algorithm,

referred to here as the two-dimensional algorithm, has been developed in this paper
to examine the dynamics of jets of perfectly conducting, incompressible Newtonian
liquids that are stressed by a radial electric field. Additionally, a computationally
inexpensive hybrid algorithm, referred to here as the one-dimensional algorithm,
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Figure 36. (a) Variation of hmin with τ for uncharged and highly charged (NE = 5), slightly
viscous jets of NOh = 0.01. (b) Self-similarity of scaled jet profiles for uncharged and highly
charged (NE = 5), slightly viscous jets of NOh = 0.01. Jet profiles in the vicinity of hmin from
two-dimensional simulations are shown at various τ close to pinch-off for which h and z−zmin

have been scaled by hmin. In both (a) and (b), k = 0.6.

based on a slender-jet approximation of the equations governing the flow within the
jet to analyse the dynamics has also been developed. Both algorithms are used to
follow the jet dynamics all the way to breakup. Both algorithms are demonstrated to
be in excellent agreement with linear theory at times well prior to breakup. Detailed
comparisons of the predictions of the two algorithms reveal that the one-dimensional
algorithm can predict accurately certain gross features of the dynamics such as
breakup times and the volumes of drops formed at pinch-off.

The mechanisms responsible for satellite drop formation from the breakup of
electrified jets have been examined thoroughly. In the absence of electric field, thin
threads are known to pinch symmetrically in the Stokes flow limit, thereby precluding
the formation of satellites. By contrast, it is shown here that in the presence of electric
field, satellites form even in the Stokes flow limit. Computations reveal that the sizes
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of the satellite drops formed from the breakup of electrified jets will always be larger
than their counterparts formed from the breakup of uncharged jets at the same values
of the Ohnesorge number and disturbance wavenumber. An equally interesting issue
is the Coulombic stability of both the satellite and primary drops formed at pinch-off.
It is shown in this work that satellite drops formed from viscous jets are particularly
unstable, especially when jets are subjected to short-wavelength perturbations at low
to moderate electric Bond numbers.

In the absence of electric field, interfaces of inviscid and low-NOh liquids are known
to overturn prior to pinch-off. Here, the application of an electric field is shown to
enhance overturning. This finding has a profound influence on the local dynamics of
pinch-off. Occurrence of overturning results in total shielding of the pinch region from
the electric field. Therefore, electrostatic stresses do not influence the local dynamics
of pinch-off of filaments of liquids of low to moderate NOh. In contrast, at large NOh

and in the Stokes flow limit, the electrostatic stresses acting in the pinch region of
highly charged electrified jets are found to be of the same order of magnitude as
capillary stresses. For a scaling theory to describe accurately the local dynamics of
pinch-off at large NOh or in the Stokes flow limit, proper account must be taken of
these large electrostatic stresses. However, as this work demonstrates, the local electric
field acting in the pinch region depends strongly on the global shape of the jet, as the
proximity of the primary drop provides partial shielding of the pinch region from the
applied field even in the Stokes flow limit. It would appear, then that the possibility
of a self-similar universal scaling law describing the pinch-off of electrified jets at
high NOh or in the Stokes flow limit may be precluded. Development of a complete
theoretical understanding of the local dynamics governing pinch-off of electrified
filaments is left as an open problem of fluid mechanics.

This work was supported by the Shreve Trust Fund at Purdue University and the
BES Program of US DOE.

Appendix A. The perfect conductor model and choice of parameter values
A liquid jet can be treated as a perfect conductor if the the charge relaxation time

te ≡ ε∗/σ , where σ and ε∗ are, respectively, the conductivity and permittivity of the

jet liquid, is much smaller than the capillary time scale tc ≡
√

ρR̃3
1/γ , namely te � tc.

For example, Zhang & Basaran (1996) used aqueous solutions of sodium chloride in
their experimental study of dripping and jetting from a capillary in an electric field.
For these solutions, the charge relaxation time ranges from te ≈ 10−4 s for pure water
to te ≈ 10−7 s for 1 mm NaCl, while tc ≈ 10−4 s for a 100 µm jet. Thus, the perfect
conductor model is certainly appropriate for describing the breakup of jets of the
more concentrated solutions of NaCl used in their experiments. López-Herrera &
Gañan-Cálvo (2004) used mixtures of different concentrations of glycerol in tap
water in their experiments on breakup of electrified jets where the jets have radii of
O(100 µm). These authors have reported that te/tc = O(10−4), thereby justifying the
use of the perfect conductor model. Therefore, the conditions required for the perfect
conductor model adopted in this paper to be applicable can readily be achieved in
experiments. It should be noted, however, that the perfect conductor model does not
apply in all cases where cone-jetting occurs. Gamero-Castaño & Hruby (2002), for
example, examined experimentally the sizes of drops formed from cone-jets of tributyl
phosphate solutions. For each experimental result reported in that work, when the
radius of the drops formed is used as the characteristic length scale, the resulting
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capillary time is smaller than the charge relaxation time. Clearly, it is inappropriate
to treat the jets as perfect conductors in such situations.

The range of Ohnesorge numbers examined in this paper is determined by the desire
to be comprehensive. For a 100 µm jet of NaCl solutions described above, NOh ≈ 10−2.
By using solutions of glycerol–tap water, as in the experiments of López-Herrera &
Gañan-Cálvo (2004), values of the Ohnesorge number as high as 10 can readily be
attained.

The range of electric Bond numbers considered in this paper corresponds roughly
to that examined experimentally by López-Herrera & Gañan-Cálvo (2004) for which
axisymmetric breakup is observed (see, for example, figure 9 of that work, which
indicates that a transition from axisymmetric breakup to asymmetric breakup occurs
between NE ≈ 3.5 and NE ≈ 5 for jets of NOh ≈ 0.08). It is only in § 3.4.5 that slightly
higher values of NE are considered. It is clearly stated in this section that results
for these higher NE are included here for the purpose of comparison with results
previously reported by Setiawan & Heister (1997). The latter paper is often cited by
others who benchmark their results against it. Further, it is explicitly stated in § 3.4.5
that the results for these high values of NE are most likely unphysical and that these
solutions would be unstable with respect to three-dimensional disturbances.

Appendix B. Domain tessellation and mesh refinement
B.1. Two-dimensional algorithm

The elliptic mesh generation algorithm used here is based on the method of
Christodoulou & Scriven (1992). The weighted residuals of the equations governing
the mesh are
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where J represents the Jacobian of the transformation from the physical domain to
the computational domain and ∂Ω is the boundary of the domain. Equations (B 1)
and (B 2) determine a set of curves of constant ξ and η that intersect at the mesh
points. The weighting parameters εs , εξ and εη, and Mξ and Mη control, respectively,
the smoothness of the ξ and η coordinate lines, the concentration of interior mesh
points, and the concentration of boundary mesh points. The functions f (ξ ) and g(η)
are chosen so as to concentrate (dilute) the mesh points in the ξ or η directions in
regions where f (ξ ) or g(η) are large (small).

For resolving the breakup of electrified jets at low to moderately high electric
Bond numbers with the two-dimensional algorithm, the computational domain is
divided into four regions. Hereinafter, this mesh is referred to as Mesh I. Region
I corresponds to the domain of the liquid jet, Ω1, while Regions II, III and IV
correspond to the domain of the outer fluid, Ω2. Four independent parameters are
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Figure 37. Coarse examples of sample meshes used with (a) the two-dimensional algorithm,
Mesh I, (b) the two-dimensional algorithm, Mesh II, and (c) the one-dimensional algorithm.

required to characterize this mesh: Nz1, which equals the number of axial elements
in Regions I–IV, and Nr1, Nr2, Nr3 and Nr4, which denote the numbers of radial
elements in Regions I, II, III and IV, respectively. A coarse sample mesh is shown in
figure 37(a). The elliptic mesh algorithm described above is used in Regions I and III
to determine the mesh point locations, with f (ξ ) and g(η) chosen to concentrate mesh
points near the free surface Sf . To increase computational efficiency, a fixed algebraic
mesh is used in Region IV. An adaptive algebraic mesh algorithm is employed in
Region II for the purpose of mesh point concentration. This is done in order to
resolve the sharp gradients in Φ which arise in the vicinity of the slender neck
region that develops as pinch-off is approached and distinguishes the present mesh
generation algorithm from its predecessors (Chen et al. 2002; Notz & Basaran 2004).
The new algorithm used to tessellate Region II first determines the direction of the
η coordinate lines at the free surface Sf , which corresponds to a curve of constant
ξ , in Region I at the previous time step and then constructs the η coordinate lines
in Region II by moving outward from Sf along these directions. The directions are
determined from the previous time step for computational efficiency. The ξ coordinate
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lines are then chosen so that the mesh points in Region II are concentrated near Sf

according to a desired weighting function. Typically, the width of Region II is chosen
to be small (O(0.001) − O(0.01)) and is exaggerated for clarity in figure 37(a).

When the breakup of electrified jets at very high NE is examined, a more complex
tessellation of the computational domain is required Hereinafter, this mesh is referred
to as Mesh II. This is necessitated by the extreme radial elongation of the portion
of the jet that forms the primary drop which is characteristic of jet breakup at very
high NE . Figure 37(b) shows a coarse example of the mesh used in these situations.
Here, the computational domain is divided into twelve regions. Regions I, II, III, VI,
IX and X correspond to the domain of the liquid jet, Ω1, while Regions IV, V, VII,
VIII, XI and XII correspond to the domain of the outer fluid, Ω2. Seven independent
parameters are used to characterize this mesh: Nz1, the number of axial elements in
Regions I, II, III, IV and V; Nz2, the number of axial elements in Regions IX, X, XI
and XII; Nr1, the number of radial elements in Regions I and IX; Nr2, the number
of radial (axial) elements in Region II (Regions VI, VII and VIII); Nr3, the number
of radial elements in Regions III, VI and X; Nr4, the number of radial elements in
Regions IV, VII and XI; and Nr5, the number of radial elements in Regions V, VIII
and XII. The elliptic mesh algorithm described above is used in each of these regions.
The functions f (ξ ) and g(η) are chosen such that the mesh points are concentrated
near Sf in Regions III, IV, VI, VII, X and XI and near S1,b (S2,b) in Regions I, II and
III (IV and V).

To determine the optimal mesh for a given set of dimensionless groups, the
mesh parameters described above must be varied independently until the computed
solutions are insensitive to further increases in each Nzj and Nrj . Measures used to
determine the insensitivity of the mesh to further refinement include the time required
for the jet to break, the volumes of the drops (primary and satellite) formed at pinch-
off, and the surface charge on the drops (primary and satellite) formed at pinch-off.
The mesh is considered to be insensitive to further refinement when an increase in
any of the mesh parameters results in a change of <0.2% in each of these measures.
For Mesh I, the optimal mesh parameters for meeting these criteria for k =0.6 and
R2 = 10 are: Nz1 = 200, Nr1 = 6, Nr2 = 3, Nr3 = 18 and Nr4 = 5. The optimal mesh for
meeting these criteria is relatively insensitive to changes in NOh for the range of NOh

examined in this work and to changes in NE for low to moderately high NE (i.e.
NE � 5). To obtain a similar degree of insensitivity to further refinement for longer
waves, it is sufficient to increase Nz1 proportionally to the increase in wavelength,
λ. Likewise, for an increase in R2, it is sufficient to increase Nr4 so that the radial
spacing of the elements in Region IV remains unchanged. Note that the boundary
between Regions III and IV is typically fixed at r = 5 and that Region IV is not
used in cases for which R2 � 5. In cases for which it is desirable to resolve in fine
detail the region in the immediate vicinity of the pinch point at the incipience of
pinch-off, it is necessary to increase Nz1. Insensitivity to further mesh refinement in
this case is determined by comparing the jet profiles in the immediate vicinity of the
pinch point obtained using different meshes. To resolve this pinch region in detail at
hmin =2 × 10−3 for k � 0.6, Nz1 = 500 is sufficient, and the other mesh parameters
need not be increased. For longer waves, Nz1 must also be increased proportionally
to the increase in λ. If calculations are continued beyond hmin = 2 × 10−3, additional
refinement is required to produce mesh independent results.

For Mesh II, the optimal mesh parameters based on the criteria described above,
with k > 1 and R2 = 10, are: Nz1 = 15, Nz2 = 90, Nr1 = 3, Nr2 = 15, Nr3 = 4, Nr4 = 3
and Nr5 = 21. This mesh is typically used only for jets with very short wavelengths
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(k > 1) and with very high electric Bond numbers (NE > 5). Increasing R2 requires
a proportional increase in Nr5 for similar insensitivity to refinement. For low to
moderate NE and for short wavelengths, Mesh I and Mesh II yield virtually identical
results using the optimal mesh parameters reported.

B.2. One-dimensional algorithm

In the one-dimensional algorithm, Ω2 is divided into two regions, in which different
weighting functions are used to determine the locations of the ξ -coordinate lines
and, hence, the mesh points. Three independent parameters describe this mesh: Nz1,
the number of axial elements; Nr1, the number of radial elements in Region I; and
Nr2, the number of radial elements in Region II. A coarse sample mesh is shown
in figure 37(c). In Region I, the weighting function used distributes the mesh points
evenly along a given spine, while in Region II, which borders the free surface Sf ,
the weighting function used concentrates the mesh points geometrically near Sf . The
fraction of each spine spanned by Region I is typically 0.9.

As with the two-dimensional algorithm, the optimal mesh is determined by
systematically varying the mesh parameters. Using the measures described for the
two-dimensional algorithm, the optimal values of these parameters for k = 0.6 and
R2 = 10 have been found to be: Nz1 = 600, Nr1 = 8 and Nr2 = 12. Larger wavelengths
and/or R2 require proportional increases in Nz1 and/or Nr1, along with an increase
in the fraction of each spine spanned by Region I.

Appendix C. Growth rates from one- and two-dimensional simulations
As was shown experimentally by Goedde & Yuen (1970) and computationally by

Ashgriz & Mashayek (1995), the appropriate growth rate for comparison with linear
theory is related to the time rate of change of the amplitude A= A(t), which is
defined as the difference between the maximum and the minimum values of the radial
coordinates of the free-surface profile. Linear theory requires a temporally constant
ω with A ∝ exp(ωt), whence it follows that ω = d log(A)/dt and that the breakup
time tb = − log(ε)/ω. For the systems described by the one- and two-dimensional
algorithms, the instantaneous growth rate is defined similarly as ω(t) = d log(A)/dt .
As alluded to previously, ω(t) is expected to match the linear growth rate precisely,
deviating only in the initial and final stages of the simulations so that a semi-log plot
of A(t) with time will be linear for most of the breakup process with a slope nearly
equal to the linear growth rate. The slope is obtained from a linear regression of
ln A(t) vs. t , with the data from the initial and final stages of the simulation excluded.
Figure 38(a) presents a typical example of results obtained by this approach. In
this example, the two-dimensional algorithm is used to simulate the breakup of a
Newtonian liquid jet in the absence of electric field effects. Here, ω(t) is essentially
constant for much of the breakup process, deviating from this linear regime only in
the initial and final stages of the process. The deviations at early times stem from
the use of initial conditions which are inconsistent with linear stability analysis. Such
deviations can be reduced by decreasing ε.

As an example, figure 38(b), which highlights the influence of electrode position
on growth rates for fixed N ′

E , shows that computed growth rates from two-
dimensional simulations are in excellent agreement with those obtained from the
dispersion relations described by (3.1) and (3.3). As noted above, in the limit as
R → ∞(R � 1/k) with N ′

E fixed, the dispersion relation used herein reduces to
Saville’s dispersion relation, and this trend is clearly demonstrated in Figure 38(b).



126 R. T. Collins, M. T. Harris and O. A. Basaran

(a) (b)

Time, t

A
m

pl
it

ud
e,

 A
(t

)

0 10 20 30 40 50

10–1

10–2

100

2D results
Regression fit

Wavenumber, k

G
ro

w
th

 r
at

e,
 ω

 (
× 

10
0)

0.2 0.4 0.6 0.8

6

8

10

R = 4
R = 5
R = 7

R = 4, linear
R = 5, linear
R = 7, linear

R → ∞, linear

Figure 38. Comparison of growth rates from one- and two-dimensional computations with
linear theory. Here, Noh = 1 and ε = 0.01. (a) Procedure used to extract growth rates from one-
and two-dimensional computations. The slope of the linear portion of the semi-log plot of the
computed variation of the amplitude of the free surface with time provides the growth rate for
comparison with linear theory. The growth rate extracted from the two-dimensional simulation,
ω =0.09782, differs from the growth rate from the analytical dispersion relation, ω = 0.09739,
by less than 0.5%. Here, A(t) = A0 exp(ωt) and k = 0.6. (b) Dependence on electrode radius
of the variation of growth rate with wavenumber. Growth rates from linear theory (lines) are
compared with results obtained from two-dimensional simulations (symbols) over a portion
of the range of unstable wavenumbers. Here, N ′

E = 2NE/ log2(R) = 0.7721. Growth rates from
Saville’s (1971) dispersion relation (R → ∞) are included for comparison.

Additional comparisons between growth rates obtained from computations and those
from linear theory are provided in § 3.1.
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